19.11.2014 Views

December 2012 - Journal of Threatened Taxa

December 2012 - Journal of Threatened Taxa

December 2012 - Journal of Threatened Taxa

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>December</strong> <strong>2012</strong> | Vol. 4 | No. 15 | Pages 3377–3472<br />

Date <strong>of</strong> Publication 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

A<br />

B<br />

C<br />

D<br />

A - Rubus glomeratus; B - Caralluma indica; C - Syzygium laetum; D - Torenia hirsuta<br />

Creative Commons Attribution 3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> articles in any medium<br />

for non-pr<strong>of</strong>it purposes, reproduction and distribution by providing adequate credit to the authors and the<br />

source <strong>of</strong> publication.


Jo u r n a l o f Th r e a t e n e d Ta x a<br />

Published by<br />

Wildlife Information Liaison Development Society<br />

Typeset and printed at<br />

Zoo Outreach Organisation<br />

96, Kumudham Nagar, Vilankurichi Road, Coimbatore 641035, Tamil Nadu, India<br />

Ph: +91422 2665298, 2665101, 2665450; Fax: +91422 2665472<br />

Email: threatenedtaxa@gmail.com, articlesubmission@threatenedtaxa.org<br />

Website: www.threatenedtaxa.org<br />

EDITORS<br />

Fo u n d e r & Ch i e f Ed i t o r<br />

Dr. Sanjay Molur, Coimbatore, India<br />

Ma n a g in g Ed i t o r<br />

Mr. B. Ravichandran, Coimbatore, India<br />

As s o c ia t e Ed i t o r s<br />

Dr. B.A. Daniel, Coimbatore, India<br />

Dr. Manju Siliwal, Dehra Dun, India<br />

Dr. Meena Venkataraman, Mumbai, India<br />

Ms. Priyanka Iyer, Coimbatore, India<br />

Ed i t o r ia l Ad v i s o r s<br />

Ms. Sally Walker, Coimbatore, India<br />

Dr. Robert C. Lacy, Minnesota, USA<br />

Dr. Russel Mittermeier, Virginia, USA<br />

Dr. Thomas Husband, Rhode Island, USA<br />

Dr. Jacob V. Cheeran, Thrissur, India<br />

Pr<strong>of</strong>. Dr. Mewa Singh, Mysuru, India<br />

Dr. Ulrich Streicher, Oudomsouk, Laos<br />

Mr. Stephen D. Nash, Stony Brook, USA<br />

Dr. Fred Pluthero, Toronto, Canada<br />

Dr. Martin Fisher, Cambridge, UK<br />

Dr. Ulf Gärdenfors, Uppsala, Sweden<br />

Dr. John Fellowes, Hong Kong<br />

Dr. Philip S. Miller, Minnesota, USA<br />

Pr<strong>of</strong>. Dr. Mirco Solé, Brazil<br />

Ed i t o r ia l Bo a r d / Su b j e c t Ed i t o r s<br />

Dr. M. Zornitza Aguilar, Ecuador<br />

Pr<strong>of</strong>. Wasim Ahmad, Aligarh, India<br />

Dr. Sanit Aksornkoae, Bangkok, Thailand.<br />

Dr. Giovanni Amori, Rome, Italy<br />

Dr. István Andrássy, Budapest, Hungary<br />

Dr. Deepak Apte, Mumbai, India<br />

Dr. M. Arunachalam, Alwarkurichi, India<br />

Dr. Aziz Aslan, Antalya, Turkey<br />

Dr. A.K. Asthana, Lucknow, India<br />

Pr<strong>of</strong>. R.K. Avasthi, Rohtak, India<br />

Dr. N.P. Balakrishnan, Coimbatore, India<br />

Dr. Hari Balasubramanian, Arlington, USA<br />

Dr. Maan Barua, Oxford OX , UK<br />

Dr. Aaron M. Bauer, Villanova, USA<br />

Dr. Gopalakrishna K. Bhat, Udupi, India<br />

Dr. S. Bhupathy, Coimbatore, India<br />

Dr. Anwar L. Bilgrami, New Jersey, USA<br />

Pr<strong>of</strong>. Dr. Wolfgang Böhme, Adenauerallee, Germany<br />

Dr. Renee M. Borges, Bengaluru, India<br />

Dr. Gill Braulik, Fife, UK<br />

Dr. Prem B. Budha, Kathmandu, Nepal<br />

Mr. Ashok Captain, Pune, India<br />

Dr. Cle<strong>of</strong>as R. Cervancia, Laguna , Philippines<br />

Dr. Apurba Chakraborty, Guwahati, India<br />

Mrs. Norma G. Chapman, Suffolk, UK<br />

Dr. Kailash Chandra, Jabalpur, India<br />

Dr. Anwaruddin Choudhury, Guwahati, India<br />

Dr. Richard Thomas Corlett, Singapore<br />

Dr. Gabor Csorba, Budapest, Hungary<br />

Dr. Paula E. Cushing, Denver, USA<br />

Dr. Neelesh Naresh Dahanukar, Pune, India<br />

Dr. A.K. Das, Kolkata, India<br />

Dr. Indraneil Das, Sarawak, Malaysia<br />

Dr. Rema Devi, Chennai, India<br />

Dr. Nishith Dharaiya, Patan, India<br />

Dr. Ansie Dippenaar-Schoeman, Queenswood, South<br />

Africa<br />

Dr. William Dundon, Legnaro, Italy<br />

Dr. Gregory D. Edgecombe, London, UK<br />

Dr. J.L. Ellis, Bengaluru, India<br />

Dr. Susie Ellis, Florida, USA<br />

Dr. Zdenek Faltynek Fric, Czech Republic<br />

Dr. Carl Ferraris, NE Couch St., Portland<br />

Dr. R. Ganesan, Bengaluru, India<br />

Dr. Hemant Ghate, Pune, India<br />

Dr. Dipankar Ghose, New Delhi, India<br />

Dr. Gary A.P. Gibson, Ontario, USA<br />

Dr. M. Gobi, Madurai, India<br />

Dr. Stephan Gollasch, Hamburg, Germany<br />

Dr. Michael J.B. Green, Norwich, UK<br />

Dr. K. Gunathilagaraj, Coimbatore, India<br />

Dr. K.V. Gururaja, Bengaluru, India<br />

Dr. Mark S. Harvey,Welshpool, Australia<br />

Dr. Magdi S. A. El Hawagry, Giza, Egypt<br />

Dr. Mohammad Hayat, Aligarh, India<br />

Pr<strong>of</strong>. Harold F. Heatwole, Raleigh, USA<br />

Dr. V.B. Hosagoudar, Thiruvananthapuram, India<br />

Dr. B.B.Hosetti, Shimoga, India<br />

Pr<strong>of</strong>. Fritz Huchermeyer, Onderstepoort, South Africa<br />

Dr. V. Irudayaraj, Tirunelveli, India<br />

Dr. Rajah Jayapal, Bengaluru, India<br />

Dr. Weihong Ji, Auckland, New Zealand<br />

Pr<strong>of</strong>. R. Jindal, Chandigarh, India<br />

Dr. A.J.T. Johnsingh, India<br />

Dr. Pierre Jolivet, Bd Soult, France<br />

Dr. Rajiv S. Kalsi, Haryana, India<br />

Dr. Rahul Kaul, Noida,India<br />

Dr. Werner Kaumanns, Eschenweg, Germany<br />

Dr. Paul Pearce-Kelly, Regent’s Park, UK<br />

Dr. P.B. Khare, Lucknow, India<br />

Dr. Vinod Khanna, Dehra Dun, India<br />

Dr. Cecilia Kierulff, São Paulo, Brazil<br />

Dr. Shumpei Kitamura, Ishikawa, Japan<br />

Dr. Ignacy Kitowski, Lublin, Poland<br />

continued on the back inside cover


JoTT Co m m u n ic a t i o n 4(15): 3377–3389<br />

Pollination biology <strong>of</strong> the crypto-viviparous Avicennia<br />

species (Avicenniaceae)<br />

A.J. Solomon Raju 1 , P.V. Subba Rao 2 , Rajendra Kumar 3 & S. Rama Mohan 4<br />

1,4<br />

Department <strong>of</strong> Environmental Sciences, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India<br />

2,3<br />

Ministry <strong>of</strong> Environment and Forests, Paryavaran Bhavan, CGO Complex, Lodhi Road, New Delhi 110003, India<br />

Email: 1 solomonraju@gmail.com (corresponding author), 2 pvsrao8@gmail.com, 3 rajekr.72@gmail.com<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Cle<strong>of</strong>as Cervancia<br />

Manuscript details:<br />

Ms # o2919<br />

Received 20 August 2011<br />

Final received 06 <strong>December</strong> <strong>2012</strong><br />

Finally accepted 06 <strong>December</strong> <strong>2012</strong><br />

Citation: Raju, A.J.S., P.V.S. Rao, R. Kumar<br />

& S.R. Mohan (<strong>2012</strong>). Pollination biology<br />

<strong>of</strong> the crypto-viviparous Avicennia species<br />

(Avicenniaceae). <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong><br />

4(15): 3377–3389.<br />

Copyright: © A.J. Solomon Raju, P.V. Subba<br />

Rao, Rajendra Kumar & S. Rama Mohan <strong>2012</strong>.<br />

Creative Commons Attribution 3.0 Unported<br />

License. JoTT allows unrestricted use <strong>of</strong> this<br />

article in any medium for non-pr<strong>of</strong>it purposes,<br />

reproduction and distribution by providing<br />

adequate credit to the authors and the source<br />

<strong>of</strong> publication.<br />

Author Details: See end <strong>of</strong> this article.<br />

Author Contribution: The field work was done<br />

by all but it is mainly carried out by AJSR and<br />

SRM. All four authors have contributed in the<br />

preparation <strong>of</strong> manuscript but Pr<strong>of</strong>. Raju is the<br />

main person among all.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Abstract: Floral biology, sexual system, breeding system, pollinators, fruiting and<br />

propagule dispersal ecology <strong>of</strong> crypto-viviparous Avicennia alba Bl., A. marina (Forsk.)<br />

Vierh. and A. <strong>of</strong>ficinalis L. (Avicenniaceae) were studied in Godavari mangrove forests<br />

<strong>of</strong> Andhra Pradesh State, India. All the three plant species initiate flowering following<br />

the first monsoon showers in June and cease flowering in late August. The flowers are<br />

hermaphroditic, nectariferous, protandrous, self-compatible and exhibit mixed breeding<br />

system. Self-pollination occurs even without pollen vector but fruit set in this mode<br />

is negligible. In all, the flowers are strictly entomophilous and the seedlings disperse<br />

through self-planting and stranding strategies.<br />

Keywords: Avicennia species, entomophily, mixed breeding system protandry, selfcompatibility.<br />

Introduction<br />

The family Avicenniaceae comprises <strong>of</strong> only one genus Avicennia.<br />

The genus consists <strong>of</strong> at least eight tree species which grow in the intertidal<br />

zone <strong>of</strong> coastal mangrove forests and ranges widely throughout<br />

tropical and warm temperate regions <strong>of</strong> the world (Tomlinson 1986; Duke<br />

1991). These species occupy diverse mangrove habitats, either within<br />

the normal tidal range or in back mangal and a high tolerance <strong>of</strong> hypersaline<br />

conditions. Of these, three species occur in Atlantic-East Pacific<br />

and five species in the Indo-West Pacific (Duke 1992). The East Africa<br />

and the Indo-Pacific species include A. <strong>of</strong>ficinalis, A. marina, A. alba, A.<br />

lanata, A. eucalyptifolia, A. balanophora and only the first three species<br />

reached the Indian subcontinent (Duke et al. 1998). A. <strong>of</strong>ficinalis has<br />

a wide range from southern India through Indo-Malaya to New Guinea<br />

and eastern Australia. A. marina has the broadest distribution, both<br />

latitudinally and longitudinally with a range from East Africa and the Red<br />

Sea along tropical and subtropical coasts <strong>of</strong> the Indian Ocean to the South<br />

China Sea, throughout much <strong>of</strong> Australia into Polynesia as far as Fiji, and<br />

south to the North Island <strong>of</strong> New Zealand (Tomlinson 1986). A. marina<br />

has the distinction <strong>of</strong> being the most widely distributed <strong>of</strong> all mangrove<br />

tree species. The ubiquitous presence in mangrove habitats around the<br />

world is due to the ability to grow and reproduce across a broad range<br />

<strong>of</strong> climatic, saline, and tidal conditions and to produce large numbers<br />

<strong>of</strong> buoyant propagules annually (Duke et al. 1998). A. alba has a wide<br />

distribution from India to Indochina, through the Malay Archipelago to<br />

the Philippines, New Guinea, New Britain, and northern Australia.<br />

Tomlinson (1986) gave a brief account <strong>of</strong> the floral biology <strong>of</strong><br />

Avicennia species. A. <strong>of</strong>ficinalis is self-compatible and occasionally self-<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389 3377


Pollination biology <strong>of</strong> Avicennia<br />

pollinating. Self-pollination <strong>of</strong> individuals is unlikely<br />

due to protandry, but the sequence and synchrony <strong>of</strong><br />

flowering, together with pollinator behaviour favours<br />

geitonogamy. Clarke & Meyerscough (1991) reported<br />

that it is pollinated by a variety <strong>of</strong> insects in Australia.<br />

These authors also reported that A. marina is visited<br />

by ants, wasps, bugs, flies, bee-flies, cantherid beetles,<br />

and moths but the most common visitor is Apis<br />

mellifera. Tomlinson (1986) described that A. alba,<br />

A. marina and A. <strong>of</strong>ficinalis have very similar flowers<br />

and hence may well be served by the same class, if<br />

not the same species <strong>of</strong> pollinators; when these species<br />

grow together, there is evidence <strong>of</strong> non-synchrony in<br />

flowering times, which might minimize the competition<br />

for pollinators (probably bees) and at the same time<br />

spread the availability <strong>of</strong> nectar over a more extended<br />

period. This state <strong>of</strong> information in a preliminary<br />

mode provided the basis for taking up the present<br />

study on the pollination biology <strong>of</strong> crypto-viviparous<br />

Avicennia alba Bl., A. marina (Forsk.) Vierh. and A.<br />

<strong>of</strong>ficinalis L. in Coringa mangrove forest <strong>of</strong> Andhra<br />

Pradesh. This paper describes the details <strong>of</strong> floral<br />

biology, sexual system, breeding system, pollinators<br />

and seedling ecology <strong>of</strong> these three Avicennia species.<br />

Further, these aspects have been discussed in the light<br />

<strong>of</strong> the existing relevant literature.<br />

Materials and Methods<br />

Floral biology<br />

The crypto-viviparous Avicennia alba, A. marina<br />

and A. <strong>of</strong>ficinalis (Avicenniaceae) occurring in<br />

Godavari mangrove forest (16 0 30’–17 0 00’N & 82 0 10’–<br />

80 0 23’E) in the state <strong>of</strong> Andhra Pradesh, India, were<br />

used for the present study. The study was conducted<br />

during February 2008–April 2010. Regular field trips<br />

were conducted to track the flowering season in order<br />

to take up intensive field studies at weekly intervals<br />

during their flowering and fruiting season. The flower’s<br />

morphological characteristics were described based<br />

on 25 flowers collected at random for each species.<br />

Quantification <strong>of</strong> the number <strong>of</strong> flowers produced per<br />

inflorescence and the duration <strong>of</strong> inflorescence were<br />

determined by tagging 10 inflorescences, which have<br />

not initiated flowering, selected at random and following<br />

them daily until they ceased flowering permanently.<br />

Anthesis was initially recorded by observing marked<br />

A.J.S. Raju et al.<br />

mature buds in the field. Later, the observations<br />

were repeated 3–4 times on different days during<br />

0600–1400 hr in order to provide accurate anthesis<br />

schedule for each plant species. Similarly, the mature<br />

buds were followed for recording the time <strong>of</strong> anther<br />

dehiscence. The presentation pattern <strong>of</strong> pollen was<br />

also investigated by recording how anthers dehisced<br />

and confirmed by observing the anthers under a 10x<br />

hand lens. Twenty five mature but undehisced anthers<br />

was collected from different plants and placed in a petri<br />

dish. Later, each time a single anther was taken out<br />

and placed on a clean microscope slide (75x25 mm)<br />

and dabbed with a needle in a drop <strong>of</strong> lactophenolaniline-blue.<br />

The anther tissue was then observed<br />

under the microscope for pollen, if any, and if pollen<br />

grains were not there, the tissue was removed from the<br />

slide. The pollen mass was drawn into a band, and<br />

the total number <strong>of</strong> pollen grains was counted under a<br />

compound microscope (40x objective, 10x eye piece).<br />

This procedure was followed for counting the number<br />

<strong>of</strong> pollen grains in each anther collected. Based on<br />

these counts, the mean number <strong>of</strong> pollen produced per<br />

anther was determined. The mean pollen output per<br />

anther was multiplied by the number <strong>of</strong> anthers in the<br />

flower for obtaining the mean number <strong>of</strong> pollen grains<br />

per flower. The characteristics <strong>of</strong> pollen grains were<br />

also recorded. The pollen-ovule ratio was determined<br />

by dividing the average number <strong>of</strong> pollen grains per<br />

flower by the number <strong>of</strong> ovules per flower. The value<br />

thus obtained was taken as pollen-ovule ratio (Cruden<br />

1977). The presence <strong>of</strong> nectar was determined by<br />

observing the mature buds and open flowers. The<br />

volume <strong>of</strong> nectar from 20 flowers collected at random<br />

from each plant species was determined. Then, the<br />

average volume <strong>of</strong> nectar per flower was determined<br />

and expressed in µl. The flowers used for this purpose<br />

were bagged at mature bud stage, opened after anthesis<br />

and squeezed nectar into micropipette for measuring<br />

the volume <strong>of</strong> nectar. Nectar sugar concentration<br />

was determined using a Hand Sugar Refractometer<br />

(Erma, Japan). For the analysis <strong>of</strong> sugar types, paper<br />

chromatography method described by Harborne (1973)<br />

was followed. Nectar was placed on Whatman No. 1<br />

<strong>of</strong> filter paper along with standard samples <strong>of</strong> glucose,<br />

fructose and sucrose. The paper was run ascendingly<br />

for 24 hours with a solvent system <strong>of</strong> n-butanolacetone-water<br />

(4:5:1), sprayed with aniline oxalate<br />

spray reagent and dried at 120 0 C in an electric oven<br />

3378<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

for 20 minutes for the development <strong>of</strong> spots from the<br />

nectar and the standard sugars. Then, the sugar types<br />

present and also the most dominant sugar type were<br />

recorded based on the area and colour intensity <strong>of</strong> the<br />

spot. Nectar amino acid types present in A. <strong>of</strong>ficinalis<br />

were also recorded as per the paper chromatography<br />

method <strong>of</strong> Baker & Baker (1973). Nectar was spotted<br />

on Whatman No. 1 filter paper along with the standard<br />

samples <strong>of</strong> 19 amino acids, namely, alanine, arginine,<br />

aspartic acid, cysteine, cystine, glutamic acid, glycine,<br />

histidine, isolecuine, leucine, lysine, methionine,<br />

phenylalanine, proline, serine, threonine, tryptophan,<br />

tyrosine and valine. The paper was run ascendingly<br />

in chromatography chamber for 24 hours with a<br />

solvent system <strong>of</strong> n-butanol-glacial acetic acid-water<br />

(4:1:5). The chromatogram was detected with 0.2%<br />

ninhydrin reagent and dried at 85 0 C in an electric oven<br />

for 15 minutes for the development <strong>of</strong> spots from the<br />

nectar and the standard amino acids. The developed<br />

nectar spots were compared with the spots <strong>of</strong> the<br />

standard amino acids. Then, the amino acid types<br />

were recorded. The stigma receptivity was observed<br />

visually and by H 2<br />

O 2<br />

test. In visual method, the stigma<br />

physical state (wet or dry) and the unfolding <strong>of</strong> its<br />

lobes were considered to record the commencement<br />

<strong>of</strong> receptivity; withering <strong>of</strong> the lobes was taken as loss<br />

<strong>of</strong> receptivity. H 2<br />

O 2<br />

test as given in Dafni et al. (2005)<br />

was followed for noting stigma receptivity period.<br />

Pollinators<br />

The insect species visiting the flowers were<br />

observed visually and by using Olympus Binoculars<br />

(PX35 DPSR Model). There was no night time<br />

foraging activity at the flowers. Their foraging activity<br />

was confined to daytime only and were observed on a<br />

number <strong>of</strong> occasions on each plant species for their<br />

foraging behaviour such as mode <strong>of</strong> approach, landing,<br />

probing behaviour, the type <strong>of</strong> forage they collect,<br />

contact with essential organs to result in pollination<br />

and inter-plant foraging activity in terms <strong>of</strong> crosspollination.<br />

The foraging insects were captured during<br />

1000–1200 hr on each plant species and brought them<br />

to the laboratory. For each insect species, 10 specimens<br />

were captured and each specimen was washed first in<br />

ethyl alcohol, the contents stained with aniline-blue on<br />

a glass slide and observed under microscope to count<br />

the number <strong>of</strong> pollen grains present. In case <strong>of</strong> pollen<br />

collecting insects, pollen loads on their corbiculae<br />

A.J.S. Raju et al.<br />

were separated prior to washing them. From this, the<br />

average number <strong>of</strong> pollen grains carried by each insect<br />

species was calculated to know the pollen carryover<br />

efficiency <strong>of</strong> different insect species.<br />

Breeding system<br />

Mature flower buds <strong>of</strong> some inflorescences on<br />

different individuals were tagged and enclosed in butter<br />

paper bags for breeding experiments. The number<br />

<strong>of</strong> flower buds used for each mode <strong>of</strong> pollination for<br />

each species was given in Table 1. The stigmas <strong>of</strong><br />

flowers were pollinated with the pollen <strong>of</strong> the same<br />

flower manually by using a brush; they were bagged<br />

and followed to observe fruit set in manipulated<br />

autogamy. The flowers were fine-mesh bagged without<br />

hand pollination to observe fruit set in spontaneous<br />

autogamy. The emasculated flowers were handpollinated<br />

with the pollen <strong>of</strong> a different flower on the<br />

same plant; they were bagged and followed for fruit<br />

set in geitonogamy. The emasculated flowers were<br />

pollinated with the pollen <strong>of</strong> a different individual<br />

plant; they were bagged and followed for fruit set<br />

Table 1. Results <strong>of</strong> breeding experiments in Avicennia<br />

species<br />

Breeding system<br />

No. <strong>of</strong> flowers<br />

pollinated<br />

No. <strong>of</strong> flowers<br />

set fruit<br />

Fruit set<br />

(%)<br />

Avicennia alba<br />

Autogamy (bagged) 40 7 17.5<br />

Autogamy (handpollinated<br />

and bagged)<br />

20 8 40<br />

Geitonogamy 32 20 62.5<br />

Xenogamy 28 18 64.28<br />

Open pollinations 50 21 42<br />

Avicennia marina<br />

Autogamy (bagged) 25 3 12<br />

Autogamy (handpollinated<br />

and bagged)<br />

30 10 33.33<br />

Geitonogamy 25 10 40<br />

Xenogamy 25 17 68<br />

Open pollinations 45 25 55<br />

Avicennia <strong>of</strong>ficinalis<br />

Autogamy (bagged) 56 12 21.42<br />

Autogamy (handpollinated<br />

and bagged)<br />

35 15 42.85<br />

Geitonogamy 30 19 63.33<br />

Xenogamy 56 38 67.85<br />

Open pollinations 129 75 58.13<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3379


Pollination biology <strong>of</strong> Avicennia<br />

in xenogamy. If fruit set is there, the percentage <strong>of</strong><br />

fruit set was calculated for each mode. The flowers/<br />

inflorescences were tagged on different plant species<br />

prior to anthesis and followed for fruit and seed set<br />

rate in open-pollinations.<br />

Seedling ecology<br />

Fruit maturation period and hypocotyl or seedling<br />

growth period prior to detachment from the parent tree<br />

were also recorded. Rose-ringed Parakeet feeding on<br />

fruit and/or hypocotyls <strong>of</strong> A. alba and A. marina was<br />

observed. A sample <strong>of</strong> fruits/hypocotyls was collected<br />

at random from these plant species to calculate the<br />

percentage <strong>of</strong> damage. Casual observations on<br />

seedling dispersal during low and high tide periods<br />

were made to record the dispersal mode.<br />

Photography<br />

Plant, flower and fruit details together with insect<br />

foraging activity on flowers were photographed with<br />

Nikon D40X Digital SLR (10.1 pixel) and TZ240<br />

Stereo Zoom Microscope with SP-350 Olympus<br />

Digital Camera (8.1 pixel).<br />

Results<br />

The three Avicennia species are evergreen trees with<br />

irregular spreading branches (Image 1a; 2a). Following<br />

monsoon showers in June, they initiate flowering and<br />

continue flowering until the end <strong>of</strong> August. Individual<br />

trees flower for 35±4 (Range 32–48) days in A. alba,<br />

33±2 (Range 32–35) days in A. marina and 38±4<br />

(Range 36–41) days in A. <strong>of</strong>ficinalis. In all the three<br />

species, the flowers are borne in terminal or axillary<br />

racemes/panicles (Image 1b; 2b; 2a). An inflorescence<br />

produces 52.34±26.96 flowers (Range 15–123) over a<br />

period <strong>of</strong> 25 days (Range 24–28) in A. alba, 47±13.97<br />

flowers (Range 26–76) over a period <strong>of</strong> 22 days (Range<br />

15–22) in A. marina and 32±11 flowers (Range 9–35)<br />

over a period <strong>of</strong> 16–25 days in A. <strong>of</strong>ficinalis.<br />

The flowers are sessile, small (4mm long; 3mm<br />

diameter), orange yellow, fragrant, actinomorphic and<br />

bisexual in all the three species. They are slightly<br />

scented in A. alba and A. marina while foetid in A.<br />

<strong>of</strong>ficinalis. The flowers are 4mm long and 3mm<br />

diameter in A. alba, 6mm long and 5mm diameter<br />

in A. marina, and 10mm long and 10mm diameter<br />

A.J.S. Raju et al.<br />

in A. <strong>of</strong>ficinalis. Calyx is short, elliptic and has four<br />

ovate, green, pubescent sepals with hairs on the outer<br />

surface. Corolla has four thick, orange yellow ovate<br />

petals forming a short tube at the base. The petals are<br />

glabrous inside and hairy outside in A. marina while<br />

the adaxial petal is the broadest and shallowly bi-lobed<br />

in A. <strong>of</strong>ficinalis. Stamens are four, epipetalous, occur<br />

at the throat <strong>of</strong> the corolla. The anthers are basifixed,<br />

exserted, introrse and arranged alternate to petals. The<br />

ovary is 2mm long in A. alba and A. marina while it is<br />

7mm long in A. <strong>of</strong>ficinalis. In all, it is conspicuously<br />

hairy and bicarpellary syncarpous with four imperfect<br />

locules and each locule contains one pendulous ovule.<br />

It is terminated with a 1–2 mm long glabrous style<br />

tapered to the bifid hairy stigma. The light yellow<br />

style and stigma arise from the center <strong>of</strong> the flower and<br />

stand erect throughout the flower life. In A. <strong>of</strong>ficinalis,<br />

the entire female structure is over-arched by stamens<br />

above. The style is bent, situated below the adaxial<br />

corolla lobe but not in the center <strong>of</strong> the flower.<br />

The mature buds open throughout the day but most<br />

buds opening during 0900–1200 hr in A. alba (Image<br />

1c,d), during 1000–1300 hr in A. marina (Image 2c,d)<br />

and during 0800–1100 hr in A. <strong>of</strong>ficinalis (Image<br />

3b–d). The petals slowly open and take 3–4 hours for<br />

complete opening to expose the stamens and stigma.<br />

The stamens bend inward overarching the stigma at<br />

anthesis and the all the anthers dehisce ½ hour after<br />

anthesis by longitudinal slits. The stigma is well<br />

seated in the center <strong>of</strong> the flower. In A. <strong>of</strong>ficinalis,<br />

the stamens gradually stand erect and bend backwards<br />

over a period <strong>of</strong> three days. After anthesis, the stigma<br />

grows gradually and becomes bifid on the morning<br />

<strong>of</strong> the 2 nd day in A. alba (Image 1e,f) and A. marina<br />

(Image 2e,f) and on the 3 rd day in A. <strong>of</strong>ficinalis (Image<br />

3e–h). The bifid condition <strong>of</strong> stigma is an indication<br />

<strong>of</strong> beginning <strong>of</strong> stigma receptivity and it remains<br />

receptive for two days in A. alba and A. marina, and for<br />

five days in A. <strong>of</strong>ficinalis. The stigmatic lobes recurve<br />

completely. The flower life is six days in A. alba, five<br />

days in A. marina and seven days in A. <strong>of</strong>ficinalis. The<br />

petals, stamens and stigma drop <strong>of</strong>f while the calyx is<br />

persistent in all the three species.<br />

The pollen production per anther is 1,967±31.824.3<br />

(Range 1,929–2,010) in A. alba, 1,643.2±31.8 (Range<br />

1,600–1,690) in A. marina and 2,444±202.4 (Range<br />

2,078–2,604) in A. <strong>of</strong>ficinalis. In all, the pollen grains<br />

are light yellow, granular, tricolporate, reticulate, muri<br />

3380<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

A.J.S. Raju et al.<br />

Image 1. Avicennia alba. a - Habitat; b - Flower unit; c - Mature Bud; d - Flower; e - Stigma condition at anthesis; f - Bifid<br />

stigma on the 2 nd day; g–i - Flower visitors collecting nectar (g - Fly (unidentified); h - Everes lacturnus; i - Fruit set in<br />

open-pollinations)<br />

broad, flat, thick; lumina small irregularly shaped<br />

and colpi deeply intruding (Image 6a–c). Their size<br />

is 24.9μm in A. alba and 33.2μm in both A. marina<br />

and A. <strong>of</strong>ficinalis. The pollen-ovule ratio is 1,967:1<br />

in A. alba, 1,643.2:1 in A. marina and 2,209.3:1 in A.<br />

<strong>of</strong>ficinalis. In all, the flowers begin nectar secretion<br />

along with anther dehiscence. The nectar secretion<br />

occurs in minute amount which is accumulated at<br />

the ovary base and on the yellow part <strong>of</strong> petals; the<br />

nectar glitters against sunlight. A flower produces<br />

0.5±0.1 (Range 0.4–0.7) μl <strong>of</strong> nectar with 40% sugar<br />

concentration in A. alba, 0.4±0.08 (Range 0.3–0.5) μl<br />

<strong>of</strong> nectar with 38% sugar concentration in A. marina<br />

and 0.65±0.09 (Range 0.5–0.8) μl <strong>of</strong> nectar with 39%<br />

sugar concentration in A. <strong>of</strong>ficinalis. The sugar types<br />

included glucose and fructose and sucrose with the<br />

first as dominant in A. alba and A. marina and the last<br />

as dominant in A. <strong>of</strong>ficinalis in which the nectar amino<br />

acids included aspartic acid, cysteine, alanine, arginine,<br />

serine, cystine, proline, lysine, glycine, glutamic acid,<br />

threonine and histidine.<br />

In all three Avicennia species, the results <strong>of</strong><br />

breeding systems indicate that the flowers are selfcompatible<br />

and self-pollinating. In A. alba, the fruit<br />

set is 17.5% in spontaneous autogamy, 40% in handpollinated<br />

autogamy, 62.5% in geitonogamy, 64.28%<br />

in xenogamy and 42% in open pollination (Image<br />

1i) (Table 1). In A. marina, the fruit set is 12% in<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3381


Pollination biology <strong>of</strong> Avicennia<br />

A.J.S. Raju et al.<br />

Image 2. Avicennia marina: a - Habitat; b - Flowering inflorescence; c - Mature bud; d - Flower; e - Stigma condition at<br />

anthesis; f - Bifid stigma on the 2nd day; g–j - Flower visitors collecting nectar (g - Unidentified fly; h - Eristalinus arvorum;<br />

i - Rhyncomya sp.; j - Fruit set in open-pollinations)<br />

spontaneous autogamy, 33.33% in hand-pollinated<br />

autogamy, 40% in geitonogamy, 68% in xenogamy<br />

and 55% in open pollination (Image 2j) (Table 1). In<br />

A. <strong>of</strong>ficinalis, the fruit set is 21.42% in spontaneous<br />

autogamy, 42.85% in hand-pollinated autogamy,<br />

63.33% in geitonogamy, 67.85% in xenogamy and<br />

58.13% in open pollination (Image 5a) (Table 1).<br />

The insects foraged the flowers <strong>of</strong> Avicennia<br />

species during day time from 0700–1700 hr. They<br />

were Apis dorsata, A. florea, Nomia sp., Chrysomya<br />

megacephala, an unidentified fly (Image 1g), Danaus<br />

chrysippus and Everes lacturnus (Image 1h) in A. alba;<br />

Halictus sp., Chrysomya megacephala, Eristalinus<br />

arvorum (Image 2h), Rhyncomya sp. (Image 2i),<br />

an unidentified fly (Image 2g), Polistis humilis and<br />

Catopsilia pyranthe in A. marina; and Apis dorsata<br />

(Image 4a), Xylocopa pubescens, Xylocopa sp. (Image<br />

4b,c), Eristalinus arvorum, Chrysomya megacephala<br />

(Image 4d), Sarcophaga sp. (Image 4e), Euploea core<br />

(Image 4j), Danaus chrysippus, D. genutia (Image 4h),<br />

3382<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

A.J.S. Raju et al.<br />

Image 3. Avicennia <strong>of</strong>ficinalis. a - Flowering branch; b–d - Different stages <strong>of</strong> anthesis; e - Flower with bent unreceptive<br />

stigma with dehisced anthers; f - Flower with erect receptive stigma and withered anthers; g - Unreceptive stigma;<br />

h - Receptive stigma.<br />

Junonia lemonias, J. hierta (Image 4i), a fly (Image 4f)<br />

and a wasp (Image 4g) (unidentified) in A. <strong>of</strong>ficinalis.<br />

The flies visited the flowers in groups while all other<br />

insects visited individually. The bees were both pollen<br />

and nectar feeders while all other insects only nectar<br />

feeders. All the insects probed the flowers in upright<br />

position to collect the forage. In case <strong>of</strong> Xylocopa<br />

bees, they made audible buzzes while collecting<br />

nectar aliquots from the petals. Butterflies landed on<br />

the petals, stretched their proboscis to collect nectar<br />

aliquots on the petals and at the flower base. In this<br />

process, all the insects invariably touched the anthers<br />

and the stigma; the ventral side <strong>of</strong> all insects was found<br />

powdered with pollen. Further, the body washings <strong>of</strong><br />

the all insect species revealed the presence <strong>of</strong> pollen;<br />

the average number <strong>of</strong> pollen grains per insect for each<br />

species varied from 67.6 to 336.2; in A. alba from<br />

63.1 to 227.4, in A. marina, and from 73 to 550.2 in A.<br />

<strong>of</strong>ficinalis (Table 2). As the nectar is secreted in minute<br />

amounts, the insects made multiple visits to most <strong>of</strong><br />

the flowers on a tree and moved frequently between<br />

trees to collect nectar. Such foraging behaviour was<br />

considered to be effecting self- and cross-pollination.<br />

In all Avicennia species, pollinated and fertilized<br />

flowers initiate fruit development immediately and<br />

take about 4–6 weeks to produce mature fruits. In<br />

fertilized flowers, only one ovule produces seed.<br />

Fruit is a 1-seeded leathery pale green capsule with<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3383


Pollination biology <strong>of</strong> Avicennia<br />

A.J.S. Raju et al.<br />

Image 4. Avicennia <strong>of</strong>ficinalis - Flower visitors. a - Apis dorsata; b & c - Xylocopa sp.; d - Chrysomya megacephala;<br />

e - Sarcophaga sp.; f - Unidentified fly collecting nectar; g - Wasp (unidentified); h - Danaus genutia; i - Junonia hierta;<br />

j - Euploea core.<br />

persistent reddish brown calyx. It is 40mm long,<br />

15mm wide in A. alba, 30–35 mm long, 25mm wide<br />

in A. marina and 30mm long, 25mm wide in A.<br />

<strong>of</strong>ficinalis. It is abruptly narrowed to a short beak<br />

and hairy throughout. Seed produces light green,<br />

hypocotyl which completely occupies the fruit cavity<br />

(Image 5b). Fruit set to the extent <strong>of</strong> 6% in A. alba<br />

and to the extent <strong>of</strong> 4% in A. marina was damaged<br />

by the Rose-ringed Parakeet Psittacula krameri which<br />

fed on the concealed hypocotyl in fruits and such fruits<br />

were found to be empty. In all three Avicennia species,<br />

the fruit together with hypocotyl falls <strong>of</strong>f the mother<br />

plant; settles in the substratum immediately at low<br />

tide period when the forest floor is exposed; it floats<br />

in water and disperses by tidal currents at high tide<br />

period until settled somewhere in the soil. The radicle<br />

side <strong>of</strong> hypocotyl penetrates the soil and produces root<br />

system while plumule side produces new leaves and<br />

subsequent aerial system. The fruit pericarp detaches<br />

and disintegrates when plumular leaves are produced.<br />

3384<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

A.J.S. Raju et al.<br />

Table 2. Pollen pick up efficiency <strong>of</strong> foraging insects on<br />

Avicennia species<br />

Insect species<br />

Sample<br />

size<br />

Range<br />

Mean±S.D<br />

Avicennia alba<br />

Apis dorsata 10 219–476 336.2±88.7<br />

A. florea 10 129–327 227.5±64.1<br />

Nomia sp. 10 110–270 200.6±50.7<br />

Chrysomya megacephala 10 86–117 101.5±11.0<br />

Fly (unidentified) 10 56–98 67.6±8.5<br />

Danaus chrysippus 10 79–96 86.2±6.28<br />

Everes lacturnus 10 57–87 70.1±10.0<br />

Avicennia marina<br />

Halictus sp. 10 110–367 215.2±78.8<br />

Chrysomya megacephala 10 126–321 227.4±66.7<br />

Rhyncomya sp. 10 91–110 99.7±7.5<br />

Eristalinus arvorum 10 96–136 118.2±13.6<br />

Polistis humilis 10 56–73 63.1±6.0<br />

Catopsilia pyranthe 10 71–95 83.8±8.61<br />

Unidentified fly 10 66–106 84.4±14.4<br />

Avicennia <strong>of</strong>ficinalis<br />

Image 5. Avicennia <strong>of</strong>ficinalis<br />

a - Fruit set in open-pollinations; b - Propagule.<br />

a<br />

b<br />

Xylocopa pubescens 10 452–789 520.2±139.1<br />

Xylocopa sp. 10 412–681 550.2±125.2<br />

Apis dorsata 10 325–541 441.3±98.1<br />

a b c<br />

Image 6. Pollen grains <strong>of</strong> Avicennia species<br />

a - A. alba; b - A. marina; c - A. <strong>of</strong>ficinalis<br />

Eristalinus arvorum 10 142–251 190.5±51.3<br />

Chrysomya megacephala 10 98–131 112.5±25.1<br />

Sarcophaga sp. 10 105–120 110.5±23.1<br />

Euploea core 10 89–154 124.5±32.6<br />

Danaus chrysippus 10 56–110 73.0±29.2<br />

D. genutia 10 79–112 94.3±24.6<br />

Junonia lemonias 10 56–128 98.6±13.2<br />

J. hierta 10 91–120 102.5±21.1<br />

Unidentified fly 10 68–104 81.0±20.4<br />

Unidentified wasp 10 45–102 85.1±12.5<br />

Discussion<br />

All the three Avicennia species studied are<br />

principally polyhaline evergreen tree species. These<br />

tree species show flowering response to monsoon<br />

showers in June; the first monsoon showers seem to<br />

provide the necessary stimulus for flowering. Opler<br />

et al. (1976) and Ewusie (1980) have reported such a<br />

flowering response to light rains in summer season in<br />

a number <strong>of</strong> plants occurring in coastal environments.<br />

The flowering period extends until August in all the<br />

three species <strong>of</strong> Avicennia at the study sites, indicating<br />

that the flowering season is only for three months in a<br />

year. On the contrary, Wium-Andersen & Christensen<br />

(1978) reported that in A. marina, flowering occurs<br />

during April–May. Further, Mulik & Bhosale (1989)<br />

noted that the flowering in this species is from April–<br />

September. These authors also mentioned that the<br />

flowering occurs during March-July in A. <strong>of</strong>ficinalis.<br />

The variation in the schedule and length <strong>of</strong> flowering<br />

season in these species may be a response to local<br />

environmental conditions and to avoid competition for<br />

the available pollinators depending on the flowering<br />

seasons and population size <strong>of</strong> the constituent plant<br />

species which vary with each mangrove forest. In all<br />

the three species, the flowers are borne either in terminal<br />

or axillary inflorescences. But, the average number <strong>of</strong><br />

flowers per inflorescence varies with each species; it<br />

is the highest in A. alba, moderate in A. marina and<br />

the least in A. <strong>of</strong>ficinalis. This flower production<br />

rate at inflorescence level may serve as an important<br />

taxonomic characteristic for the identification <strong>of</strong> these<br />

three species.<br />

In all, the flowers are strongly protandrous and the<br />

stamens with dehisced anthers over-arch the stigma.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3385


Pollination biology <strong>of</strong> Avicennia<br />

The stigma shows post-anthesis growth. It is erect and<br />

seated in the center <strong>of</strong> the flower in A. alba and A.<br />

marina while it is bent and situated below the adaxial<br />

corolla lobe in A. <strong>of</strong>ficinalis. The erect stigma does<br />

not change its orientation throughout the flower life in<br />

A. alba and A. marina while the bent stigma becomes<br />

erect on day 3. The stigma is bifid and appressed on<br />

the day <strong>of</strong> anthesis in all the three species; it remains<br />

in the same state also on day 2 in A. <strong>of</strong>ficinalis.<br />

The stigma commences receptivity by diverging in<br />

dorsi-ventral plane; it is receptive on day 2 and 3 in<br />

A. alba and A. marina, and on day 3, 4 and 5 in A.<br />

<strong>of</strong>ficinalis. The timing <strong>of</strong> commencement <strong>of</strong> stigma<br />

receptivity in A. <strong>of</strong>ficinalis strongly contradicts with<br />

an earlier report by Reddi et al. (1995) that the stigma<br />

attains receptivity three hours after anthesis with the<br />

bent stigma becoming erect. In A. <strong>of</strong>ficinalis, stigma<br />

behaviour is more advanced towards achieving crosspollination.<br />

In all the three species, self-pollination <strong>of</strong><br />

individual flowers is unlikely on the day <strong>of</strong> anthesis<br />

due to protandry but the stamens with dehisced anthers<br />

over-arching the stigma may facilitate the fall <strong>of</strong><br />

pollen on the receptive stigma when the latter attains<br />

receptivity. In effect, self-pollination may occur and<br />

the same is evidenced through fruit set in bagged<br />

flowers without manual self-pollination. Further, the<br />

sequence and synchrony <strong>of</strong> flowering, and pollinator<br />

behaviour at tree level contribute to geitonogamy<br />

(Clarke & Meyerscough 1991). Hand-pollination<br />

results indicate that it is self-compatible and fruit set<br />

occurs through autogamy, geitonogamy and allogamy.<br />

The hermaphroditic flowers with strong protandry<br />

and long period <strong>of</strong> flower life in these species suggest<br />

that they are primarily adapted for cross-pollination.<br />

Clarke & Meyerscough (1991) also reported that A.<br />

marina is protandrous, self-compatible and selfpollinating<br />

but the fruits resulting from spontaneous<br />

self-pollination showed a higher rate <strong>of</strong> maternal<br />

abortion reflecting an inbreeding depression. Coupland<br />

et al. (2006) reported that in A. marina, autogamy<br />

is most unlikely and emphasized the importance <strong>of</strong><br />

pollen vectors to the reproductive success. This report<br />

is not in agreement with the results obtained in handpollination<br />

experiments on A. marina. Primack et al.<br />

(1981) suggested that protandry promotes out-crossing<br />

in mangroves, and that insect pollination facilitates<br />

it. They also suggested that geitonogamy in coastal<br />

colonizing plants would allow some fruit set in isolated<br />

A.J.S. Raju et al.<br />

colonizing plants, and thereafter the proportion <strong>of</strong> such<br />

pollinations would decline as pollen is transferred<br />

between plants. Pollen transfer between plants in such<br />

situations would still result in sibling mating. However,<br />

this is counteracted by dispersal <strong>of</strong> propagules,<br />

canopy suppression <strong>of</strong> seedlings and irregular yearly<br />

flowering among trees in close proximity. Clarke &<br />

Meyerscough (1991) reported that in A. marina, some<br />

trees flower and fruit every year while some others do<br />

not flower every year. Those with complete canopy<br />

crops did not produce another large crop the following<br />

year. A similar pattern observed within a tree where<br />

fruit is produced on one branch and in the following<br />

year heavy flowering shifts to another branch. In<br />

the present study, all the three species <strong>of</strong> Avicennia<br />

flowered annually and the flowering is uniform on<br />

all branches within a tree. The study suggests that<br />

annual mass flowering, protandry, self-compatibility<br />

and self-pollination ability are important adaptations<br />

for Avicennia species to successfully colonize new<br />

areas and expand their distribution range as pioneer<br />

mangroves.<br />

All the three species <strong>of</strong> Avicennia are hermaphroditic<br />

and have similar floral architecture. In all, the flowers<br />

are <strong>of</strong> open type and shallow with small aliquots <strong>of</strong><br />

nectar which is exposed to rapid evaporation resulting<br />

in increased nectar sugar concentration. Corbet<br />

(1978) considered these characteristics as adaptations<br />

for fly pollination. Hexose-rich nectar is present in<br />

A. alba and A. marina while sucrose-rich nectar in A.<br />

<strong>of</strong>ficinalis. Hexose-rich nectar is the characteristic <strong>of</strong><br />

fly- and short-tongued bee-flowers while sucrose-rich<br />

nectar is the characteristic <strong>of</strong> wasps and butterflies<br />

(Baker & Baker 1982; 1983). The nectar sugar<br />

concentration is high and ranged from 38–40 % in<br />

all the three Avicennia species. Cruden et al. (1983)<br />

reported that high nectar sugar concentration is the<br />

characteristic <strong>of</strong> bee-flowers while low nectar sugar<br />

concentration is the characteristic <strong>of</strong> butterfly-flowers.<br />

Baker & Baker (1982) reported that the floral nectar is<br />

an important source <strong>of</strong> amino acids for insects. Dadd<br />

(1973) stated that insects require ten essential amino<br />

acids <strong>of</strong> which arginine, lysine, threonine and histidine<br />

are present in the nectar <strong>of</strong> A. <strong>of</strong>ficinalis. He also<br />

reported that proline and glycine are essential amino<br />

acids for some insects; these two amino acids are also<br />

present in the nectar <strong>of</strong> A. <strong>of</strong>ficinalis. He further stated<br />

that other amino acids such as alanine, aspartic acid,<br />

3386<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

glutamic acid, glycine and serine while not essential<br />

do increase insect growth. All these amino acids are<br />

also present in the nectar <strong>of</strong> A. <strong>of</strong>ficinalis. Shiraishi<br />

& Kuwabara (1970) reported that proline stimulates<br />

salt receptor cells in flies. Goldrich (1973) reported<br />

that histidine elicits a feeding response while glycine<br />

and serine invoke an extension <strong>of</strong> the proboscis.<br />

The nectars <strong>of</strong> A. alba and A. marina have not been<br />

analyzed for amino acids and hence this aspect has not<br />

been discussed.<br />

The flowers <strong>of</strong> all the three species <strong>of</strong> Avicennia<br />

with differences in their structural and functional<br />

characteristics as stated above have been able to<br />

attract different classes <strong>of</strong> insects—bees, wasps, flies<br />

and butterflies. Of these, bees while collecting pollen<br />

and nectar, and all other insects while collecting nectar<br />

effected pollination and their ability to carry pollen<br />

has been evidenced in their body washings. Flies<br />

are known as short distance fliers and such behaviour<br />

largely results in autogamy or geitonogamy. Since<br />

these flies visit the flowers as large groups, there is<br />

automatically a competition for the available nectar<br />

which is secreted in small aliquots on the petals <strong>of</strong><br />

all the three Avicennia species. In consequence, they<br />

shift from tree to tree in search <strong>of</strong> nectar forage and<br />

in the process they contribute to both self- and crosspollination.<br />

All other insects are habitual long-distance<br />

fliers and effect both self- and cross-pollination. An<br />

earlier report by Subba Reddi et al. (1995) showed that<br />

only bees and flies are the pollinators <strong>of</strong> A. <strong>of</strong>ficinalis<br />

at the study sites. Tomlinson (1986) mentioned that<br />

Avicennia flowers are bee-pollinated. In Australia,<br />

A. marina is pollinated by ants, wasps, bugs, flies,<br />

bee-flies, cantharid beetles and moths (Clarke &<br />

Meyerscough 1991).<br />

Tomlinson (1986) documented that A. alba, A.<br />

marina and A. <strong>of</strong>ficinalis have very similar flowers<br />

and hence may well be served by the same class, if<br />

not by the same species <strong>of</strong> pollinators; when these<br />

species grow together, there is evidence <strong>of</strong> nonsynchrony<br />

in flowering times, which might minimize<br />

the competition for pollinators (probably bees) and at<br />

the same time spread the availability <strong>of</strong> nectar over<br />

a more extended period. In the present study, these<br />

plant species grow together, flower synchronously<br />

but served by the same classes <strong>of</strong> insects. There is<br />

no competition for pollen among different classes <strong>of</strong><br />

insects since only bees collect pollen while all other<br />

A.J.S. Raju et al.<br />

classes <strong>of</strong> insects collect only nectar. Fly pollinators<br />

with their swarming behaviour at the flowers may<br />

enable the plant species to set fruit to the extent<br />

possible. Flies and bees are usually consistent and<br />

reliable when compared to wasps and butterflies.<br />

Therefore, the study shows flies and bees play an<br />

important role in the success <strong>of</strong> sexual reproduction<br />

in all the three species <strong>of</strong> Avicennia. Despite being<br />

pollinated by different classes <strong>of</strong> insect pollinators and<br />

having the ability to self-pollinate even in the absence<br />

<strong>of</strong> insect activity as evidenced in bagged flowers,<br />

the natural fruit set stands at 42–58 % in these plant<br />

species. This low fruit set could be due to maternal<br />

abortion <strong>of</strong> self-pollinated fruits as reported by Clarke<br />

& Meyerscough (1991), non-availability <strong>of</strong> sufficient<br />

pollen to receptive stigmas due to pollen feeding<br />

activity <strong>of</strong> bees and the nutritional resource constraint<br />

to the maternal parent. Coupland et al. (2006) while<br />

reporting on fruit set aspects <strong>of</strong> A. marina in Australia<br />

mentioned that fruit set is not pollinator limited but<br />

resource limited.<br />

In Avicenniaceae, the flowers have been reported to<br />

contain four ovules (Tomlinson 1986). In the present<br />

study, all the three species <strong>of</strong> Avicennia are 4-ovuled<br />

but only one ovule develops into mature seed in<br />

fertilized and fruited flowers as in Rhizophoraceae. The<br />

production <strong>of</strong> one-seeded fruits may be due to maternal<br />

resource constraint or maternal regulation <strong>of</strong> seed set.<br />

Fruits grow and mature within 5–6 weeks in A. alba<br />

and within 4 weeks in the other two Avicennia species.<br />

The duration <strong>of</strong> fruit maturation is not in agreement<br />

with the report <strong>of</strong> Wium-Andersen & Christensen<br />

(1978) who stated that the development from flower<br />

bud to mature fruit takes a few months. The calyx is<br />

persistent in all the three species but it does not expand<br />

to enclose the growing fruit. Therefore, the calyx has<br />

no role in sheltering or protecting the fruit. As the fruit<br />

is a leathery capsule, it does not require any protection<br />

from the calyx.<br />

The single seed formed in the fruit is not dormant<br />

and germinates immediately to produce chlorophyllous<br />

seedling which remains within the fruit, while still<br />

on the maternal parent. This is a characteristic <strong>of</strong><br />

“crypto-viviparous” species; similar situation exists<br />

in the genera such as Aegiceras, Aegialitis, Nypa and<br />

Pelliciera (Tomlinson 1986). In all these species, fruit<br />

is the propagule; the seedling occupies the fruit cavity.<br />

The chlorophyllous seedling actively photosynthesizes<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3387


Pollination biology <strong>of</strong> Avicennia<br />

while the maternal parent supplies the water and<br />

necessary nutrients (Selvam & Karunagaran 2004). In<br />

Avicennia species, the propagules are small, light and<br />

the entire embryo is buoyant after detachment from<br />

the maternal parent. Gradually, the fruit pericarp is<br />

lost exposing the leathery succulent cotyledons to tidal<br />

water. Rabinowitz (1978) reported that A. marina has<br />

an absolute requirement for a stranding period in order<br />

to establish since its propagules always float in tidal<br />

water. He also felt that the propagules must have<br />

freedom from tidal disturbance in order to take hold<br />

in the soil. In consequence, this species is restricted<br />

to the higher ground portions <strong>of</strong> the swamp where the<br />

tidal inundation is less frequent. In the present study,<br />

Avicennia species exhibit self-planting strategy at low<br />

tide and stranding strategy at high tide. However,<br />

their seedlings disperse widely in tidal water but<br />

establishment is mainly stationed in the polyhaline<br />

zone. Duke et al. (1998) reported that Avicennia<br />

seedlings disperse widely and are genetically uniform<br />

throughout their range. In the study areas, genetic<br />

studies are required to know whether all the three<br />

species studied are genetically uniform. When the<br />

seedlings settle, radicle penetrates the sediment before<br />

the cotyledons unfold. The first formal leaves appear<br />

one month after germination and the second pair one to<br />

two months (Wium-Andersen & Christensen 1978).<br />

Coupland et al. (2006) reported that Avicennia<br />

propagules are a rich source <strong>of</strong> nutrients and attract a<br />

diverse range <strong>of</strong> insect predators which in turn influence<br />

the rate <strong>of</strong> seedling maturation. Resource constraints<br />

and insect predation on developing fruit and seedling<br />

may both act to reduce fruit set. In A. marina and A.<br />

germinans, the seedlings tend to be high in nutritive<br />

value and have relatively few chemical defenses<br />

(Smith 1987; McKee 1995). These species tend to<br />

exhibit a pattern <strong>of</strong> very rapid initial predation (Allen<br />

et al. 2003). In the present study, seedling predation<br />

has been evidenced in A. alba and A. marina only; in<br />

both the species, the Rose-ringed Parakeet Psittacula<br />

krameri attacks propagules prior to their detachment<br />

from the maternal parent. Seedling predation by crabs<br />

after detachment from the maternal parent may be<br />

expected since different species <strong>of</strong> crabs have been<br />

found in the study areas. Therefore, seedling predation<br />

may reduce the success <strong>of</strong> seedling establishment in<br />

all the three species <strong>of</strong> Avicennia.<br />

References<br />

A.J.S. Raju et al.<br />

Allen, J.A., K.W. Krauss & R.D. Hauff (2003). Factors<br />

limiting the intertidal distribution <strong>of</strong> the mangrove species<br />

Xylocarpus granatum. Oecologia 135: 110–121.<br />

Baker, H.G. & I. Baker (1973). Some anthecological aspects<br />

<strong>of</strong> evolution <strong>of</strong> nectar-producing flowers, particularly amino<br />

acid production in nectar, pp. 243–264. In: Heywood, V.H.<br />

(ed.). Taxonomy and Ecology, Academic Press, London.<br />

Baker, H.G. & I. Baker (1982). Chemical constituents <strong>of</strong><br />

nectar in relation to pollination mechanisms and phylogeny,<br />

pp. 131–171. In: Nitecki, H.M. (ed.). Biochemical aspects<br />

<strong>of</strong> Evolutionary Biology, University <strong>of</strong> Chicago Press,<br />

Chicago.<br />

Baker, H.G. & I. Baker (1983). A brief historical review <strong>of</strong> the<br />

chemistry <strong>of</strong> floral nectar, pp. 126–152. In: Bentley, B. & T.<br />

Elias (eds.). The Biology <strong>of</strong> Nectaries, Columbia University<br />

Press, New York.<br />

Clarke, P.J. & P.J. Meyerscough (1991). Floral biology and<br />

reproductive phenology <strong>of</strong> Avicennia marina in south<br />

eastern Australia. Australian <strong>Journal</strong> <strong>of</strong> Botany 39: 283–<br />

293.<br />

Corbet, S.A. (1978). Nectar, insect visits, and the flowers<br />

<strong>of</strong> Echium vulgare, pp. 21–30. In: Richards, A.J. (ed.).<br />

The Pollination <strong>of</strong> Flowers by Insects, Academic Press,<br />

London.<br />

Coupland, G.T., I.P. Eric & K.A. McGuinness (2006).<br />

Floral abortion and pollination in four species <strong>of</strong> tropical<br />

mangroves from northern Australia. Aquatic Botany 84:<br />

151–157.<br />

Cruden, R.W. (1977). Pollen-ovule ratios: a conservative<br />

indicator <strong>of</strong> breeding systems in flowering plants. Evolution<br />

31: 32–46.<br />

Cruden, R.W., H.M. Hermann & S. Peterson (1983). Patterns<br />

<strong>of</strong> nectar production and plant-pollinator co-evolution, pp.<br />

80–125. In: Bentley, B. & T. Elias (eds.). The Biology <strong>of</strong><br />

Nectaries. Columbia University Press, New York.<br />

Dadd, R.H. (1973). Insect nutrition: current developments and<br />

metabolic implications. Annual Review <strong>of</strong> Entomology 18:<br />

881–420.<br />

Dafni, A., P.G. Kevan & B.C. Husband (2005). Practical<br />

Pollination Biology. Enviroquest Ltd., Ontario, 590pp.<br />

Duke, N.C. (1991). A systematic revision <strong>of</strong> the mangrove<br />

genus Avicennia (Avicenniaceae) in Australasia. Australian<br />

<strong>Journal</strong> <strong>of</strong> Systematic Botany 4: 299–324.<br />

Duke, N.C. (1992). Mangrove floristics and biogeography, pp.<br />

63–100. In: Robertson, A.J. & D.M. Alongi (eds.). Tropical<br />

Mangrove Ecosystems, Coastal and Estuarine Studies<br />

Series. American Geographical Union, Washington.<br />

Duke, N.C., A.H.B. John, J.A. Goodall & E.R. Ballment<br />

(1998). A genetic structure and evolution <strong>of</strong> species in the<br />

mangrove genus Avicennia (Avicenniaceae) in the Indowest<br />

pacific. Evolution 52: 1612–1626.<br />

Ewusie, J.Y. (1980). Tropical Ecology. Heinemann Educational<br />

Books Ltd., London, 205pp.<br />

Goldrich, N.R. (1973). Behavioural responses <strong>of</strong> Phormia<br />

3388<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389


Pollination biology <strong>of</strong> Avicennia<br />

regina (Meigen) to labellar stimulation with amino acids. <strong>Journal</strong> <strong>of</strong> General<br />

Physiology 61: 74–88.<br />

Harborne, J.B. (1973). Phytochemical Methods. Chapman and Hall, London,<br />

302pp.<br />

McKee, K.L. (1995). Mangrove species distribution and propagule predation in<br />

Belize: An exception to the dominance-predation hypothesis. Biotropica 27: 334–<br />

345.<br />

Mulik, N.G. & L.J. Bhosale (1989). Flowering phenology <strong>of</strong> the mangroves from<br />

the west coast <strong>of</strong> Maharashtra. <strong>Journal</strong> <strong>of</strong> the Bombay Natural History Society<br />

86: 355–359.<br />

Opler, P.A., G.W. Frankie & H.G. Baker (1976). Rainfall as a factor in the release,<br />

timing and synchronization <strong>of</strong> anthesis by tropical trees and shrubs. <strong>Journal</strong> <strong>of</strong><br />

Biogeography 3: 231–236.<br />

Primack, R.B., N.C. Duke & P.B. Tomlinson (1981). Floral morphology in relation<br />

to pollination ecology in five Queensland coastal plants. Austrobaileya 4: 346–<br />

355.<br />

Rabinowitz, D. (1978). Dispersal properties <strong>of</strong> mangrove propagules. Biotropica 10:<br />

47–57.<br />

Reddi, C.S., A.J.S. Raju & S.N. Reddy (1995). Pollination ecology <strong>of</strong> Avicennia<br />

<strong>of</strong>ficinalis L. (Avicenniaceae). <strong>Journal</strong> <strong>of</strong> Palynology 31: 253–260.<br />

Selvam, V. & V.M. Karunagaran (2004). Ecology and Biology <strong>of</strong> Mangroves.<br />

Coastal Wetlands: Mangrove Conservation and Management. Orientation Guide<br />

1. M.S. Swaminathan Research Foundation, Chennai, 158pp.<br />

Shiraishi, A. & M. Kuwabara (1970). The effects <strong>of</strong> amino acids on the labellar hair<br />

chemosensory cells <strong>of</strong> the fly. <strong>Journal</strong> <strong>of</strong> General Physiology 56: 768–782.<br />

Smith, T.J. (1987). Seed predation in relation to tree dominance and distribution in<br />

mangrove forests. Ecology 68: 266–273.<br />

Tomlinson, P.B. (1986). The Botany <strong>of</strong> Mangroves. Cambridge University Press, New<br />

York, 413pp.<br />

Wium-Andersen, S. & B. Christensen (1978). Seasonal growth <strong>of</strong> mangrove trees<br />

in southern Thailand. II. Phenology <strong>of</strong> Bruguiera cylindrica, Ceriops tagal,<br />

Lumnitzera littorea and Avicennia marina. Aquatic Botany 5: 383–390.<br />

A.J.S. Raju et al.<br />

Author Details:<br />

Pr o f. A.J. So l o m o n Ra j u is Head in the<br />

Department <strong>of</strong> Environmental Sciences, Andhra<br />

University, Visakhapatnam. He is presently<br />

working on endemic and endangered plant<br />

species in southern Eastern Ghats forests with<br />

financial support from UGC and MoEF, and on<br />

mangroves <strong>of</strong> Andhra Pradesh with financial<br />

support from MoEF.<br />

Dr. P.V. Su b b a Ra o is Assistant Director working<br />

in the Ministry <strong>of</strong> Environment & Forests,<br />

Government <strong>of</strong> India, New Delhi.<br />

Mr. Ra j e n d r a Ku m a r is Research Officer<br />

working in the Ministry <strong>of</strong> Environment &<br />

Forests, Government <strong>of</strong> India, New Delhi, and<br />

also pursuing PhD (part-time) under Pr<strong>of</strong>. A.J.<br />

Solomon Raju.<br />

Dr. S. Ra m a Mo h a n is Assistant Director,<br />

Department <strong>of</strong> Horticulture, Government <strong>of</strong><br />

Andhra Pradesh. He has worked under Pr<strong>of</strong>.<br />

A.J. Solomon Raju for PhD during which he did<br />

part <strong>of</strong> the work reported in this paper.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3377–3389<br />

3389


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3390–3394<br />

Philodendron williamsii Hook. f. (Araceae), an endemic<br />

and vulnerable species <strong>of</strong> southern Bahia, Brazil used for<br />

local population<br />

Luana S.B. Calazans 1 , Erica B. Morais 2 & Cassia M. Sakuragui 3<br />

1,3<br />

Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Departamento de Botânica, Av. Carlos Chagas Filho, 373 -<br />

Sala A1-084 - Bloco A, CEP 21941-902, Ilha do Fundão, Rio de Janeiro, RJ, Brazil<br />

2<br />

Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Botânica, Quinta da Boa Vista, CEP 20940-040, Rio<br />

de Janeiro, RJ, Brazil<br />

Emails: 1 luanasbcalazans@gmail.com (corresponding author), 2 ericcabarroso@gmail.com, 3 cmsakura12@gmail.com<br />

Abstract: An updated description and information on ecology,<br />

geographical distribution, ethnobiology, uses and conservation<br />

<strong>of</strong> Philodendron williamsii are presented here. The species has<br />

a restricted geographical distribution and the roots <strong>of</strong> its natural<br />

populations are widely extracted to be used for local handicraft.<br />

During the fertile period <strong>of</strong> the plant, areas where the species<br />

grow were prospected in order to collect, observe, photograph<br />

and consult people who directly use parts <strong>of</strong> the plants. Additional<br />

specimens from five herbaria were analyzed. We propose the<br />

inclusion <strong>of</strong> the species as Vulnerable based on the categories<br />

and the criteria proposed by the IUCN. Environmental education<br />

for the local extractors and the regularization <strong>of</strong> its extractive<br />

activity are suggested here.<br />

Keywords: Conservation, extractivism, imbé, southern Bahia,<br />

taxonomy.<br />

Resumo (Portuguese Abstract): São aqui apresentadas uma<br />

descrição atualizada, informações sobre a ecologia, distribuição<br />

geográfica, etnobiologia, usos e conservação de Philodendron<br />

williamsii. A espécie tem distribuição geográfica restrita e as<br />

raízes de suas populações naturais s<strong>of</strong>rem intenso extrativismo<br />

voltado para o artesanato local. Áreas do habitat natural da<br />

espécie foram visitadas durante seu período fértil com o objetivo<br />

de coletar, observar, fotografar e consultar a população local<br />

que faz uso direto da planta. Espécimes adicionais de cinco<br />

herbários foram também analisados. A inclusão da espécie na<br />

Lista Vermelha de Espécies Ameaçadas é proposta com base<br />

nas categorias e critérios da IUCN. Sugerimos a educação<br />

ambiental com os extratores locais e a regularização desta<br />

atividade para conservação da espécie.<br />

Palavras chave: conservação, extrativismo, imbé, Sul da Bahia,<br />

taxonomia.<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Anonymity requested<br />

Manuscript details:<br />

Ms # o3124<br />

Received 16 March <strong>2012</strong><br />

Final received 01 September <strong>2012</strong><br />

Finally accepted 24 November <strong>2012</strong><br />

Citation: Calazans, L.S.B., E.B. Morais & C.M. Sakuragui (<strong>2012</strong>).<br />

Philodendron williamsii Hook. f. (Araceae), an endemic and vulnerable<br />

species <strong>of</strong> southern Bahia, Brazil used for local population. <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3390–3394.<br />

Copyright: © Luana S.B. Calazans, Erica B. Morais & Cassia M. Sakuragui<br />

<strong>2012</strong>. Creative Commons Attribution 3.0 Unported License. JoTT allows<br />

unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes,<br />

reproduction and distribution by providing adequate credit to the authors<br />

and the source <strong>of</strong> publication.<br />

Acknowledgements: We are grateful to Marco Octávio Pellegrini for the<br />

help with the images and suggestions in the manuscript, Rodrigo Theófilo<br />

Valadares for the map elaboration, the craftsmen and foresters Mr. Aderval<br />

and Mr. Gildo for the field assistance, all the people who helped us with<br />

information, Hugo Fernandes-Ferreira for the help with the ethnobiology<br />

methodology, Vitor Tenorio da Rosa for the contribution with anatomical<br />

knowledge and Ana Cecília Castro for suggestions in the manuscript.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Philodendron williamsii Hook. f. is a poorly known<br />

species <strong>of</strong> Philodendron subgenus Meconostigma<br />

(Araceae), described in 1871 from material collected<br />

by C.H. Williams in the Bahia State, probably near<br />

Salvador and has been cultivated at Kew (Mayo<br />

1991).<br />

Due to some similar morphological characters<br />

with P. stenolobum E.G. Gonç. (Gonçalves & Salviani<br />

2002), many horticulturists believe they have it in their<br />

collections, however, they actually possess specimens<br />

<strong>of</strong> the latter. Populations currently circumscribed<br />

as P. stenolobum, which is endemic to the Espírito<br />

Santo state, were treated as P. williamsii in the latest<br />

revision <strong>of</strong> the subgenus Meconostigma (Mayo 1991),<br />

since the author could not have access to the fertile<br />

material from these populations. The main differences<br />

between them lie in leaf dimensions and gynoecium<br />

morphology (Table 1 in Gonçalves & Salviani 2002).<br />

Despite its ornamental potential for landscaping, P.<br />

williamsii is rarely found in live collections due to the<br />

difficulty <strong>of</strong> its propagation and cultivation.<br />

The aim <strong>of</strong> the work is to give new information on<br />

3390<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3390–3394


Philodendron williamsii<br />

ecology, geographical distribution, uses, ethnobiology<br />

and conservation <strong>of</strong> P. williamsii, an endemic and<br />

threatened species from the Atlantic Forests <strong>of</strong><br />

southern Bahia.<br />

Materials and Methods<br />

Field work was carried out in February and<br />

<strong>December</strong> <strong>of</strong> 2011, searching for Philodendron<br />

species in Bahia State, specially prospecting areas <strong>of</strong><br />

Itacaré and Una, where the species grows. Special<br />

effort was made to collect the plants during the fertile<br />

period. In order to obtain information on its use by<br />

the local population, semi-structured interviews were<br />

conducted (Huntington 2000), selecting informants<br />

(craftsmen, merchants and foresters) who use parts <strong>of</strong><br />

the plants directly in their activities.<br />

To complement the description, ecological data and<br />

geographical distribution, material from the following<br />

herbaria were also analyzed: ALCB, CEPEC, HUEFS,<br />

RB, RFA (acronyms according to Thiers, constantly<br />

updated). The descriptions followed Mayo (1991),<br />

with modifications. The conservation status was<br />

proposed based on the categories and the criteria<br />

proposed by the IUCN (2010).<br />

Results and Discussion<br />

Philodendron williamsii Hook. f., Bot. Mag. 97: t.<br />

5899. 1871. Type: near Salvador, Bahia, Brazil, Nov.<br />

1878, C.H. Williams s/n (holotype K, image!).<br />

Hemi-epiphyte, terrestrial or rupicolous herb,<br />

arborescent, internodes less than 1mm long;<br />

intravaginal squamules numerous, 1–2.5 mm long or<br />

less, ca. 1–2 mm broad, triangular or multi-toothed,<br />

inconspicuous, detachable, persistent or deciduous.<br />

Leaf: Petiole 30–82 cm long, broadly canaliculate<br />

with acute margins, blade with anterior and posterior<br />

division, overall length 32–100 cm, overall width<br />

21.4–50 cm, ovate to elongate-ovate, margin entire<br />

to repand, subcoriaceous to coriaceous, dark glossy<br />

green above, paler green below, apex acute to obtuse<br />

with acuminate tip, base sagitatte, anterior division<br />

21.6–70 cm long, primary lateral veins 4–5 per side,<br />

prominent on abaxial surface, paler green above, redtinged<br />

below, secondary lateral veins evident, posterior<br />

divisions 7.7–25.3 cm long, basal ribs denuded for<br />

3.3–5.9 cm.<br />

Inflorescence: One per floral sympodium;<br />

peduncle 6.5–10.8 cm; spathe 15.3–30 cm, cymbiform,<br />

L.S.B. Calazans et al.<br />

median constriction absent, externally green and<br />

internally cream; spadix 16-29.5 cm long, male zone<br />

3.5-7.5 cm, sterile median zone 4-14.5 cm, female<br />

zone 3,6-8.5 cm.<br />

Gynoecium: ovary flask-shaped, (10)-11-13-locular,<br />

locules 3-4-ovulate, axial placentation, style lobes very<br />

elongated, style body lacking, central dome present,<br />

short.<br />

Examined Material: Brazil. Bahia: Cairú, Garapuá,<br />

caminho para a Mata do Abreu, 12.iv.2003, coll.<br />

M.L. Guedes & D. Rigueira 10247 (ALCB); same<br />

city, ramal para os povoados de Torrinha e Tapuía,<br />

25.x.1984, coll. L.A. Mattos Silva & T.S. dos Santos<br />

1772 (CEPEC); Ilhéus, Km 35 da estrada Ilhéus -<br />

Serra Grande, 22.x.1983, coll. A.M. Carvalho et al.<br />

(CEPEC 33176); Itacaré, Caminho entre as praias da<br />

Concha e de Rezende, 14 0 16’37.0”S & 38 0 59’03.7”W,<br />

16.ii.2011, coll. L.S.B. Calazans & E.B. Morais 54<br />

(HUEFS); same locality, 14.xii.2011, coll. L.S.B.<br />

Calazans et al. 155 (RFA); same city, 2-3 km ao sul<br />

da cidade, perto da foz do riacho ao lado de algumas<br />

barracas, 25.v.1991, coll. S.J. Mayo et al. 771<br />

(CEPEC, RB); same locality, 28.iv.1991, coll. S.J.<br />

Mayo 765 (CEPEC, RB); Maraú, 5km SE <strong>of</strong> Maraú at<br />

junction with road North to Ponta do Mutá, 14 0 08’S,<br />

39 0 00’W, 2.ii.1977, coll. Harley et al. 18501 (CEPEC,<br />

RB); Olivença, 6km a leste da cidade, 14 0 58’15.2”S<br />

& 39 0 2’11.9”W, 29.ii.2000, coll. E.G. Gonçalves et<br />

al. 411 (CEPEC); Una, Reserva Biológica do Mico-<br />

Leão (IBAMA), 15 0 09’S & 39 0 05’W, 13.ix.1993, coll.<br />

A.M. Amorim et al. 1337 (CEPEC); same locality,<br />

20.ix.1998, coll. S.C. Sant’Ana et al. 674 (CEPEC);<br />

same city, road to Ilhéus, 13km, 15 0 13’S & 39 0 04’W,<br />

23.i.1977, coll. R.M. Harley 18187 (CEPEC); same<br />

city, Reserva Biológica de Una, 15 0 10.938’S &<br />

39 0 04.181’W, 11.xii.2011, coll. L.S.B. Calazans et<br />

al. 139 (CEPEC); Uruçuca, Parque Estadual Serra do<br />

Condurú, 14 0 28’803”S & 39 0 06’344”W, 28.ix.2000,<br />

coll. W.W. Thomas et al. (CEPEC 86775); same city,<br />

Serra Grande, 14 0 25’S & 39 0 01’W, same data, coll.<br />

A.M. Amorim et al. 641 (CEPEC); same locality,<br />

06.iii.2001, coll. E.G. Gonçalves et al. 789 (CEPEC);<br />

Valença, RPPN Fazenda Água Branca, 13 0 19’44”S<br />

& 39 0 5’25”W, 30.x.2004, coll. P. Fiaschi et al. 2618<br />

(CEPEC).<br />

Ecology and Distribution<br />

Philodendron williamsii has a distribution restricted<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3390–3394<br />

3391


Philodendron williamsii<br />

L.S.B. Calazans et al.<br />

Figure 1. Geographic distribution <strong>of</strong> Philodendron williamsii. Red points are our collections (Calazans & Morais 54 and<br />

Calazans et al. 139,155) and black points are other collections from the analyzed Herbaria.<br />

to the Atlantic Forest on the southern coast <strong>of</strong> the<br />

Brazilian state <strong>of</strong> Bahia, where part <strong>of</strong> the original<br />

vegetation remains protected due to ecotourism<br />

(Oliveira 2002) and cocoa cultivation, which is<br />

the major crop <strong>of</strong> the region (Cassano et al. 2009;<br />

CEPLAC 2011). Although its type locality is pointed<br />

probably near Salvador, there are no records for the<br />

region and vicinity and we did not see any population<br />

around the city. This species can be considered rare in<br />

nature since there are few herbarium collections and a<br />

limited area <strong>of</strong> occurrence (Fig. 1).<br />

It occurs in the restingas and pluvial forest,<br />

including flooded areas, as hemi-epiphytes, rupicolous<br />

or terrestrial. Generally, populations are not too close.<br />

They were always under median to high luminosity,<br />

as commonly noted in the Philodendron subg.<br />

Meconostigma. Terrestrial individuals are generally<br />

found in forest edges, clearings or sandy soils <strong>of</strong><br />

restinga vegetation. Hemi-epiphytes are more common<br />

and can reach a great height in the canopy (up to 25m),<br />

where the light intensity is higher. This feature makes<br />

these hemi-epiphytes individuals hard to be noticed and<br />

collected, as reported by many collectors. However,<br />

once found, it can be promptly recognized by the long<br />

feeder roots that reach the ground, sometimes growing<br />

several meters until finally entering the soil (Image<br />

2b).<br />

There is a remarkable population growing on<br />

granitic outcrops rocks at Itacaré beach, a few meters<br />

from the sea (Image 1a&d). This same population<br />

a<br />

c<br />

Image 1. Philodendron williamsii Hook f.<br />

a - Rupiculous population (Calazans & Morais 54); b -<br />

Hemi-epiphyte individual with storied cork recently taken<br />

(Itacaré, not collected); c - Leaf blade (Calazans et al.<br />

139); d - Inflorescence in full bloom. (Calazans et al. 155).<br />

Photos: LSB Calazans & EB Morais.<br />

b<br />

d<br />

3392<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3390–3394


Philodendron williamsii<br />

a<br />

c<br />

Image 2. Philodendron williamsii Hook f.<br />

a - Stem (Calazans & Morais 54); b - Feeder roots (Una,<br />

not collected); c - Storied cork recently extracted from the<br />

roots; d - Handcraft lampshade made from the storied cork.<br />

Photos: LSB Calazans & EB Morais.<br />

was previously related as a form <strong>of</strong> P. corcovadense<br />

Kunth with shorter internodes (Mayo 1991), but<br />

we were able to collect their flowers and fruits and<br />

verify they belong to P. williamsii. These species are<br />

morphologically similar and frequently grow in<br />

similar conditions, both being endemic to the Brazilian<br />

Atlantic coast. The main differences between them<br />

are in stem and gynoecium morphology (longer<br />

internodes, conspicuous intravaginal squamules,<br />

ovary barrel-shaped, 4-8-locules and style lobes short<br />

in P. corcovadense).<br />

Uses and Ethnobiology<br />

Mayo (1991) reported that P. williamsii fruits were<br />

appreciated as a native delicacy, called “milho de<br />

caboclo” (caboclo’s corn), but despite our efforts, we<br />

couldn’t confirm if this use by the local population still<br />

b<br />

d<br />

L.S.B. Calazans et al.<br />

occurs.<br />

The roots are widely used in local craftwork. The<br />

handicraftsmen refer to the young roots <strong>of</strong> P. williamsii<br />

as “imbé” and take the outer layer (storied cork) (Image<br />

2c) to ornament their pieces, such as lampshades,<br />

luminaries and trays (Image 2d). These layers are<br />

very slender and translucid, allowing the passage <strong>of</strong><br />

red-colored light, which adds a special beauty to the<br />

pieces, making it unique and characteristic <strong>of</strong> this area<br />

in Bahia. The mature roots are grey and opaque but<br />

possess some brightness and are also used to make<br />

handcrafted, rustic pieces.<br />

The entire plant is called “mãe do imbé” (imbé’s<br />

mother) and the leaf scars in the stem are called<br />

“olhos do imbé” (imbé’s eyes) (Image 2a) due to<br />

its appearance. The craftsmen are easily able to<br />

distinguish the Philodendron species that occur in the<br />

region, almost entirely, based on their use. Thus, P.<br />

fragrantissimum (Hook) G. Don., a common species<br />

in the region, is called “mother”, but is a mother<br />

that never gives “imbé”. Philodendron pedatum<br />

(Hook.) Kunth and P. hederaceum (Jacq.) Schott are<br />

not recognized as “mothers”, probably because their<br />

morphology differs from much <strong>of</strong> P. williamsii.<br />

Another folk belief is that P. williamsii plants are<br />

always born on the tree branches and when the “mother”<br />

is mature, the “imbé” (roots) drop to the ground. This<br />

may be partly explained due to the difficulty to find<br />

young terrestrial individuals, probably due to light<br />

conditions on forest soil.<br />

Although the craftsmen who accompanied us said<br />

that only few roots are taken <strong>of</strong>f each individual, this<br />

activity must be carefully monitored since it is very<br />

common in southern Bahia and puts these populations<br />

at risk. The local population knows by tradition<br />

that just after a year the roots are ready again to be<br />

extracted, but they are not aware that the plant might<br />

die if the roots are completely removed. This shows<br />

that tradition and popular knowledge doesn’t always<br />

assure the protection <strong>of</strong> this species.<br />

The roots <strong>of</strong> two others Philodendron subg.<br />

Meconostigma species that occur in the Atlantic Forest,<br />

P. bipinnatifidum Schott ex Endl. and P. corcovadense,<br />

respectively in São Paulo and Paraná states, are also<br />

used by the local population to create craft items and<br />

other rural constructions (Schneider & Mello Filho<br />

2001; Valente & Negrelle 2011). In the Amazonian<br />

region, various species <strong>of</strong> the genus Heteropsis Kunth<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3390–3394<br />

3393


Philodendron williamsii<br />

are also used for this purpose (Soares et al. 2011).<br />

Conservation<br />

In view <strong>of</strong> its rarity and anthropic pressure, we<br />

propose the species be assessed for inclusion in the<br />

IUCN Red List <strong>of</strong> <strong>Threatened</strong> Species providing<br />

support for its conservation. We believe that the<br />

regularization <strong>of</strong> extractive activity and environmental<br />

education is important and will allow the continued<br />

use <strong>of</strong> P. williamsii in craftwork without affecting<br />

their natural populations. This species is known<br />

only in a small area in southern Bahia (< 20000km²),<br />

mainly in the moist forests, occurring at least in three<br />

conservation units, with very few known populations.<br />

Due to its ecological features and ethnobiology,<br />

this plant has become increasingly difficult to find in<br />

the past few years. To help assure the continuation <strong>of</strong><br />

this traditional activity, studies on its propagation in<br />

vitro and acclimatization would also be desired.<br />

REFERENCES<br />

Cassano, C., G. Schroth, D. Faria, J. Delabie & L. Bede<br />

(2009). Landscape and farm scale management to enhance<br />

biodiversity conservation in the cocoa producing region <strong>of</strong><br />

southern Bahia, Brazil. Biodiversity and Conservation 18:<br />

577–603.<br />

CEPLAC (Comissão Executiva do Plano da Lavoura<br />

Cacaueira) (2011). Cacau - Informações de<br />

L.S.B. Calazans et al.<br />

Mercado (19/09/2011 à 16/12/2011). Ano III, no. 13.<br />

Downloaded on 24 February <strong>2012</strong>.<br />

Gonçalves, E.G. & E.R. Salviani (2002). New species<br />

and changing concepts <strong>of</strong> Philodendron subgenus<br />

Meconostigma. Aroideana 25: 3–15.<br />

Huntington, H.P. (2000). Using traditional ecological<br />

knowledge in science: methods and applications. Ecological<br />

Applications 10: 1270–1274.<br />

Mayo, S.J. (1991). A revision <strong>of</strong> Philodendron subgenus<br />

Meconostigma (Araceae). Kew Bulletin 46: 601–681.<br />

Oliveira, J.A.P. (2002). Implementing Environmental Policies<br />

in Developing Countries Through Decentralization:<br />

The Case <strong>of</strong> Protected Areas in Bahia, Brazil. World<br />

Development 30(10): 1713–1736.<br />

Schneider, S.M. & L.E.M. Filho (2001). Duas espéices<br />

ornamentais de Philodendron Schott (subgênero<br />

Meconostigma) das restingas fluminenses. Boletim do<br />

Museu Nacional, Nova Série, Botânica 114: 1–15.<br />

Soares, M.L.C., S.J. Mayo, R. Gribel & D. Kirkup (2011).<br />

Elliptic Fourier Analysis <strong>of</strong> leaf outlines in five species <strong>of</strong><br />

Heteropsis (Araceae) from the Reserva Florestal Adolpho<br />

Ducke, Manaus, Amazonas, Brazil. Kew Bulletin 66: 463–<br />

470.<br />

Thiers, B. (constantly updated). Index Herbariorum: A global<br />

directory <strong>of</strong> public herbaria and associated staff. New York<br />

Botanical Gardens’ Virtual Herbarium. Online version. Date <strong>of</strong> download 9 March<br />

<strong>2012</strong>.<br />

Valente, T.P. & R.R.B. Negrelle (2011). Harvesting <strong>of</strong> cipópreto<br />

(roots <strong>of</strong> Philodendron corcovadense Kunth) in the<br />

South <strong>of</strong> Brazil. Forests, Trees and Livelihoods 20: 211–<br />

212.<br />

3394<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3390–3394


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3395–3400<br />

Sonneratia ovata Backer (Lythraceae): status and<br />

distribution <strong>of</strong> a Near <strong>Threatened</strong> mangrove species in<br />

tsunami impacted mangrove habitats <strong>of</strong> Nicobar Islands,<br />

India<br />

P. Nehru 1 & P. Balasubramanian 2<br />

1,2<br />

Division <strong>of</strong> Landscape Ecology, Salim Ali Centre for Ornithology and Natural History, Anaikatty (P.O.), Coimbatore, Tamil Nadu<br />

641108, India<br />

Email: 1 nehrumcc@gmail.com (corresponding author), 2 balusacon@yahoo.com<br />

Mangrove forests are the most productive ecosystem<br />

adapted to thrive in the coastal margins <strong>of</strong> the tropics<br />

(Ellison & Fransworth 2001). The ecosystem service<br />

provided by mangroves includes breeding grounds<br />

for many marine organisms, a carbon sink and is also<br />

the main source <strong>of</strong> economy for coastal dwelling<br />

human communities (Kathiresan & Bingham 2001).<br />

Mangrove ecosystems play a major role in protecting<br />

coastal regions from natural calamities such as storms,<br />

hurricanes and tsunamis. Regardless <strong>of</strong> the services<br />

provided, mangrove forests are disappearing from the<br />

world at an alarming rate <strong>of</strong> 1% per year and almost<br />

35% <strong>of</strong> the mangroves have disappeared in the last<br />

two decades <strong>of</strong> the 20 th century (Valiela et al. 2001).<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Abstract: The world’s most productive ecosystem, the<br />

mangrove forest, is under immense pressure due to natural<br />

and human induced disturbances. The Indian Ocean tsunami<br />

on 26 <strong>December</strong> 2004 had an adverse effect on these habitats<br />

by breaking and uprooting the mangrove trees. The mangrove<br />

vegetation and the coastal forest <strong>of</strong> Nicobar Islands, India, were<br />

severally damaged by the force <strong>of</strong> the tsunami and the loss <strong>of</strong><br />

habitat due to the sudden rise in sea level. We studied the recolonization<br />

<strong>of</strong> mangroves species that began after the tsunami<br />

over 19 Islands and 25 locations present in the Nicobar group.<br />

Sonneratia ovata (Lythraceae), a Near <strong>Threatened</strong> landward<br />

mangrove species, is reported for the first time from India. A total<br />

<strong>of</strong> 43 individuals <strong>of</strong> S. ovata was recorded from two sites, namely,<br />

Oh Hi Poh and Dhili Kadi, on Katchall Island. All the individuals<br />

<strong>of</strong> mangrove species ≥ 1cm girth at breast height were counted<br />

from both sites. The relative density for Bruguiera gymnorhiza<br />

(77%) and Sonneratia caseolaris (77%) are high at Oh Hi Poh<br />

and Dhili Kadi, respectively. Global distribution, occurrence<br />

in India, threats and conservation <strong>of</strong> S. ovata are discussed in<br />

detail. The influence <strong>of</strong> the tsunami in the dispersal <strong>of</strong> S. ovata<br />

from the nearest known sources Thailand, Malaysia or Indonesia<br />

is not very clear. Hence, molecular based study is required for<br />

the confirmation <strong>of</strong> the possible seed source location.<br />

Keywords: Habitat destruction, Indian Ocean tsunami,<br />

mangrove, recolonization, Sonneratia ovata.<br />

Editor: Marília Cunha Lignon<br />

Manuscript details:<br />

Ms # o3009<br />

Received 16 November 2011<br />

Final received 20 August <strong>2012</strong><br />

Finally accepted 25 October <strong>2012</strong><br />

Citation: Nehru, P. & P. Balasubramanian (<strong>2012</strong>). Sonneratia ovata Backer<br />

(Lythraceae): status and distribution <strong>of</strong> a Near <strong>Threatened</strong> mangrove species<br />

in tsunami impacted mangrove habitats <strong>of</strong> Nicobar Islands, India. <strong>Journal</strong><br />

<strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3395–3400.<br />

Copyright: © P. Nehru & P. Balasubramanian <strong>2012</strong>. Creative Commons<br />

Attribution 3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> this article<br />

in any medium for non-pr<strong>of</strong>it purposes, reproduction and distribution by<br />

providing adequate credit to the authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The financial support received from the Forest<br />

Department <strong>of</strong> Andaman and Nicobar Islands is gratefully acknowledged.<br />

We thank Shri. Negi PCCF (WL), Shri. Ajai Saxena, CCF and Dinesh<br />

Kannan DFO <strong>of</strong> Forest Department <strong>of</strong> Andaman and Nicobar Islands for their<br />

interest in the project. Comments by Dr. Aris Dason, Assistant pr<strong>of</strong>essor,<br />

Madras Christian College and Dr. H. N. Kumara, Scientist, SACON helped<br />

us to improve the manuscript. Mr. P. Rajan, SACON helped us in map<br />

preparation.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

The remaining mangrove forests are under immense<br />

anthropogenic pressure from felling, encroachment,<br />

shrimp cultivation, hydrological alterations, chemical<br />

spills, and land conversion (McKee 2005; Giri et al.<br />

2008). Natural disturbances such as storms, hurricanes,<br />

tsunamis, land elevation or submergence due to tectonic<br />

movements, climate change and sea level rise are also<br />

threatening this biologically important ecosystem.<br />

The mega earthquake <strong>of</strong> 9.15 magnitude and the<br />

following tsunami on 26 <strong>December</strong> 2004 had a serious<br />

impact on the human population and on the biodiversity<br />

<strong>of</strong> the coastal regions in the Asian countries such<br />

as India, Sri Lanka, Indonesia, Burma, Thailand,<br />

Singapore and Malaysia. The close vicinity <strong>of</strong> the<br />

Nicobar Islands to the epicenter <strong>of</strong> the earthquake<br />

resulted in a heavy impact on the mangroves and<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400 3395


Sonneratia ovata on Nicobar<br />

littoral forests. It was variously estimated that the<br />

tsunami wiped <strong>of</strong>f 60–70 % <strong>of</strong> the mangrove forests<br />

in the Nicobar Islands (Ramachandran et al. 2005;<br />

Sridhar et al. 2006). More importantly, subduction<br />

<strong>of</strong> the Indian plate with the Burma plate during this<br />

mega earthquake caused the Nicobar Islands to sink<br />

into the sea by about 1m, this resulted in a rise in the<br />

sea level in the coastal areas where mangroves and<br />

littoral evergreen vegetation were prevalent (Sankaran<br />

2005; Sivakumar 2007). Perennial submergence <strong>of</strong><br />

pneumatophores resulted in the scorching <strong>of</strong> mangrove<br />

trees due to the hypoxic condition. This submergence<br />

also resulted in the formation <strong>of</strong> new inter tidal areas<br />

at the expense <strong>of</strong> flat coastal forests (littoral forest) and<br />

coconut plantations that existed adjacent to the coast<br />

(Nehru & Balasubramanian 2011) and mangroves<br />

started colonizing in these newly formed habitats<br />

(NFH).<br />

The post tsunami research work in the Nicobar<br />

Islands on mangroves are almost all based only on<br />

remote sensing and GIS (Ramachandran et al. 2005;<br />

Sridhar et al. 2006; Porwal et al. <strong>2012</strong>). A single field<br />

based study that described the mangrove plant species<br />

diversity in the NFH <strong>of</strong> Central Nicobar Group <strong>of</strong><br />

Islands was by Nehru & Balasubramanian (2011).<br />

The current study describes the population,<br />

distribution and microhabitat preference <strong>of</strong> the Near<br />

<strong>Threatened</strong> mangrove species Sonneratia ovata Backer<br />

(Lythraceae) from the NFH after the tsunami impact.<br />

Materials and Methods<br />

We surveyed the Nicobar Islands from October<br />

2010 to July 2011 for assessing the colonization <strong>of</strong><br />

mangrove species in the NFH. Excluding Batti Malv,<br />

Isle <strong>of</strong> Man and Megapode Island, the entire coastal<br />

line <strong>of</strong> all the other 19 islands, viz., Car Nicobar,<br />

Chowra, Bombuka, Teresa, Tillanchong, Kamorta,<br />

Trinket, Nancowrie, Katchall, Great Nicobar, Little<br />

Nicobar, Kondul, Kobra, Manchal, Pigeon, Pilomilo,<br />

Tris, Trak, and Meroe <strong>of</strong> the Nicobar group were<br />

surveyed (Fig. 1).<br />

It is to be noted that the Megapode Island which<br />

was largely covered by mangrove vegetation prior<br />

to the tsunami was totally submerged into the sea<br />

after the tsunami (Sankaran 2005). Apart from a<br />

single scorched tree stump in the middle <strong>of</strong> the sea,<br />

no evidence was found during the present study<br />

confirming the existence <strong>of</strong> this island.<br />

P. Nehru & P. Balasubramanian<br />

Qualitative data on inundation levels, substratum,<br />

freshwater influx, pre tsunami history <strong>of</strong> the habitat,<br />

adjacent forest type, tsunami destruction level, number<br />

<strong>of</strong> colonizing mangroves and mangrove associates<br />

were noted for each NFH by direct observation.<br />

Geographic coordinates were taken using the Garmin<br />

76C SX at all the localities and the area was calculated<br />

using the GE-path s<strong>of</strong>tware package (ver. 1.4.6).<br />

All the individuals ≥1cm girth at breast height<br />

(GBH) <strong>of</strong> mangroves species present in the NFH were<br />

enumerated. The whole population <strong>of</strong> S. ovata was<br />

enumerated and each individual was tagged. Samples<br />

<strong>of</strong> all the mangrove species were collected for<br />

herbarium purpose. Relative density was calculated<br />

for mangrove species studied in Katchall Island.<br />

Results<br />

In total, 25 localities distributed over eight islands<br />

were observed to have NFH. S. ovata was observed<br />

only on Katchall Island (7 0 51’–8 0 01’N & 93 0 17’–<br />

93 0 28’E) at two localities namely Oh Hi Poh and Dhili<br />

Kadi where vast stretch <strong>of</strong> littoral forest existed prior<br />

to tsunami, but are presently colonized by mangroves<br />

(Fig. 1). The total area <strong>of</strong> NFH at these two locations<br />

was 23.9 and 4.64 ha, respectively. The littoral forest<br />

existing in these two locations experienced different<br />

modes <strong>of</strong> destruction during the tsunami leading to<br />

the transformation into mangrove forests. At Oh Hi<br />

Poh, the littoral forest that existed prior to the tsunami<br />

was uprooted and resulted in the deposition <strong>of</strong> copious<br />

amount <strong>of</strong> logs in the substratum (Image 1a). At<br />

Dhili Kadi, the entire stretch <strong>of</strong> littoral vegetation<br />

was scorched due to salt stress and hypoxia created<br />

by the rise <strong>of</strong> sea level leaving a vast stretch <strong>of</strong> snags<br />

(Image 1b). A total <strong>of</strong> 43 live individuals <strong>of</strong> S. ovata<br />

were recorded (13 at Oh Hi Poh and 30 at Dhili Kadi)<br />

along the edges <strong>of</strong> the NFH abutting the evergreen hill<br />

forest. The relative density was high for Bruguiera<br />

gymnorhiza (77%) and Sonneratia caseolaris (77%) at<br />

the NFH studied at Dhili Kadi (n=114) and Oh Hi Poh<br />

(n=237), respectively (Figs. 2&b).<br />

S. ovata was always found intermixed with the<br />

associated species (viz. B. gymnorhiza, S. caseolaris,<br />

Barringtonia racemosa and Crataeva religiosa),<br />

whereas its conspecific S. caseolaris was mostly found<br />

as mono-dominat patches with out any associated<br />

species. The substratum in both these sites was muddy<br />

clay towards the sea and firm clay inland. S. ovata is<br />

3396<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400


Sonneratia ovata on Nicobar<br />

P. Nehru & P. Balasubramanian<br />

Figure 1. Nicobar Islands, India, showing the study localities, on Katchall Island, where Sonneratia ovata was observed: 1 -<br />

Dhili Kadi; 2 - Oh Hi Poh.<br />

found in the firm clay substratum towards the landward<br />

mangrove forest edge where constant seepage <strong>of</strong><br />

freshwater from the hill forest was observed.<br />

S. ovata is distinguished from other species <strong>of</strong> the<br />

genus Sonneratia by (i) having verrucose texture on<br />

the outer surface <strong>of</strong> the calyx, (ii) fruits are enclosed by<br />

persistent calyx, and the calyx are either reflexed or flat<br />

in the other species (iii) and suborbicular coriaceous<br />

leaves without a mucronate apex. S. ovata normally<br />

grows in the landward mangrove habitats where sea<br />

water enters only during full moon and spring tides.<br />

A detailed description and the nomenclature <strong>of</strong> the<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400<br />

3397


Sonneratia ovata on Nicobar<br />

P. Nehru & P. Balasubramanian<br />

© P. Nehru<br />

© P. Nehru<br />

Image 1. a - A view <strong>of</strong> Oh Hi Poh NFH showing deposition <strong>of</strong><br />

logs in the substratum by uprooted trees (23.xi.2010);<br />

b - A view <strong>of</strong> Dhili Kadi NFH showing vast stretch <strong>of</strong> snags<br />

(28.iv.2011)<br />

species are given below.<br />

Sonneratia ovata Backer, Bull. Jard. Bot.<br />

Buitenzorg Ser. 3, 2: 329. 1920; Qin & al. in Wu &<br />

Raven, Fl. China 13: 287. 2007.<br />

Trees up to 8m high; bark lenticellate;<br />

pneumatophores ca. 20cm high, thin, pointed. Leaves<br />

opposite, sub-orbicular to ovate-elliptic, 5.5–9 x 4–8<br />

cm, attenuate to cuneate at base, entire to undulate at<br />

margins, obtuse at apex, coriaceous; petioles 0.8–1.5<br />

cm long. Flowers 1–3, terminal, ca. 3 cm across, white.<br />

Bracts orbicular, ca. 0.5 cm, cauducous. Pedicels 1.5–<br />

2 cm long. Sepals 6, coriaceous, verrucose outside,<br />

smooth, pinkish at base inside. Petals 6, linear, 1.5–2<br />

x 0.1–0.2 cm, white. Stamens numerous; filaments<br />

2–3 cm long; anthers basifixed. Style 1.8–2.5 cm long;<br />

stigma capitate. Berry sub-globose, 2.5–3 x 3–4 cm,<br />

ca. 1/3 <strong>of</strong> the fruit enclosed within persistent calyx;<br />

seeds numerous.<br />

Flowering and fruiting: Throughout the year with<br />

peaks during February–March and July–August<br />

(Images 2 a&b).<br />

Specimen examined: 28.vi.2011, Andaman and<br />

Nicobar Islands, Nicobar District, Katchall Island,<br />

Dhili Kadi, P. Nehru (189). The voucher specimen is<br />

deposited in SACON Herbarium.<br />

Discussion and Conclusions<br />

The genus Sonneratia has six species distributed<br />

in the tropical mangrove forests from East Africa to<br />

Australia (Mabberley 2005). In India, it is represented<br />

by four species namely S. alba, S. apetala, S. caseolaris<br />

and S. grifithii (Banerjee et al. 2002). Occurrence <strong>of</strong> S.<br />

ovata within the Indian territory has not been reported<br />

© P. Nehru<br />

Image 2. a - Inflorescence <strong>of</strong> Sonneratia ovata (23.xi.2010); b - Fruiting twig <strong>of</strong> S.ovata (28.iv.2011)<br />

3398<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400


Sonneratia ovata on Nicobar<br />

P. Nehru & P. Balasubramanian<br />

80.00<br />

60.00<br />

Relative density (%)<br />

40.00<br />

20.00<br />

0.00<br />

B. gymnorhiza<br />

S. ovata<br />

H. littoralis<br />

N. fruticans<br />

B. racemosa<br />

R. apiculata<br />

R. mucronata<br />

C. religiosa<br />

Species<br />

80.00<br />

60.00<br />

Relative density (%)<br />

40.00<br />

20.00<br />

0.00<br />

S. caseolaris<br />

B. gymnorhiza<br />

N. fruticans<br />

R. mucronata<br />

S. ovata<br />

H. littoralis<br />

Figure 2. Relative density <strong>of</strong> mangrove species at Dhili Kadi (a) and Oh Hi Poh (b) on Katchall Island<br />

(Banerjee et al. 1989; Dagar et al. 1991; Banerjee<br />

et al. 2002; Mandal & Naskar 2008; Yi-feng et al.<br />

2011). Thus the present report is a new record for the<br />

flora <strong>of</strong> India. This species is distributed in East and<br />

Southeast Asian countries such as China, Malaysia,<br />

Singapore, Thailand, Indonesia, New Guinea and<br />

Vietnam (Haining et al. 2007) and categorized as<br />

Near-<strong>Threatened</strong> by IUCN due to severe habitat loss<br />

throughout its distributional range (Polidoro et al.<br />

2010).<br />

There are two probable reasons for the occurrence<br />

<strong>of</strong> S.ovata on Nicobar Islands. Dagar et al. (1991) has<br />

noticed an individual <strong>of</strong> Sonneratia spp. at Katchall<br />

Island without any reproductive parts and speculated<br />

its identity as S. grifithii. If it was a misidentification <strong>of</strong><br />

S. ovata, then possibly this species must have existed<br />

very rarely prior to the tsunami, and later became<br />

common in the NFH <strong>of</strong> Katchall Island. Or, the seeds<br />

<strong>of</strong> S. ovata from the nearest sources viz. Indonesia,<br />

Malaysia and Singapore must have been carried by the<br />

tsunami and established a new population on Katchall<br />

Island.<br />

Sonneratia spp. along with Avicennia are usually<br />

considered pioneers <strong>of</strong> mangrove swamps and seeds<br />

<strong>of</strong> Sonneratia spp. are intolerant to shade, germinating<br />

on bare or near bare mud banks (Duke & Jakes<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400<br />

3399


Sonneratia ovata on Nicobar<br />

1987). Hence, the scorching <strong>of</strong> littoral forests due to<br />

salt stress has resulted in the formation <strong>of</strong> open area<br />

and the heliophilic nature <strong>of</strong> S. ovata has eventually<br />

ameliorated the species to colonize the NFH. The<br />

occurrence <strong>of</strong> S. ovata in the NFH abutting the<br />

evergreen hill forests confirms the landward movement<br />

<strong>of</strong> mangroves when subjected to sea level rise, as<br />

proposed by Ellison (2005). Landward mangroves are<br />

vulnerable to sea-level rise, since there may not be any<br />

habitat to re-establish because mangrove edges are<br />

highly influenced by human developmental activities<br />

(Polidoro et al. 2010).<br />

It is strongly recommended to include landward<br />

mangrove species such as Sonneratia spp. in the<br />

mangrove restoration programs as many <strong>of</strong> the current<br />

programs give emphasis mainly to seaward mangroves<br />

such as Rhizophora spp., and Avicennia spp. (Ellison<br />

2000). Further research based on molecular tools can<br />

provide more information on the occurrence <strong>of</strong> S.ovata<br />

on Katchall Island.<br />

References<br />

Banerjee, L.K., A.R.K. Sastry & M.P. Nayar (1989).<br />

Mangroves in India identification manual. Botanical Survey<br />

<strong>of</strong> India, Culcutta,110pp.<br />

Banerjee, L.K., T.A. Rao, A.R.K. Sastry & D. Ghosh (2002).<br />

Diversity <strong>of</strong> Coastal Plant Communities in India. ENVIS &<br />

EMCBTAP, Botanical Survey <strong>of</strong> India, Kolkata, 524pp.<br />

Dagar, J.C., A.D. Mongia & K. Bandopadhyay (1991).<br />

Mangroves <strong>of</strong> Andaman & Nicobar Islands. IBH & Oxford<br />

Publication, New Delhi, 166pp.<br />

Duke, N.C. & B.R. Jakes (1987). A systematic revision <strong>of</strong> the<br />

mangrove genus Sonneratia (sonneratiaceae) in Australia.<br />

Blumea 32: 277–302.<br />

Ellison, A.M. (2000). Mangrove restoration: Do we know<br />

enough?. Restoration Ecology 8: 219–229.<br />

Ellison, J. (2005). Holocene palynology and sea-level change<br />

in two estuaries in southern Irian Jaya. Palaeogeography,<br />

Palaeoclimatology, Palaeoecology 220: 291–309.<br />

Ellison, A.M. & E.J. Farnsworth (2001). Mangrove<br />

community ecology, pp. 423–442. In: Bertness, M.D., S.<br />

Gaines & M.E. Hay (eds.). Marine Community Ecology.<br />

Sinauer Press, Sunderland, Massachusetts, 550pp.<br />

Giri, C., Z. Zhu, L.L. Tieszen, A. Singh, S. Gillette &<br />

J.A. Kelmelis (2008). Mangrove forest distribution and<br />

dynamics (1975–2005) <strong>of</strong> the tsunami-affected region <strong>of</strong><br />

Asia. <strong>Journal</strong> <strong>of</strong> Biogeography 35: 519–528.<br />

Haining, Q., S. Graham & M.G. Gilbert (2007). Flora <strong>of</strong><br />

P. Nehru & P. Balasubramanian<br />

China, Lythraceae. Harvard University Herbaria. Electronic<br />

database accessible at http://flora.huh.harvard.edu/china/<br />

PDF/PDF13/Sonneratia.pdf<br />

Mabberley, D.J. (2005). The Plant-book: A Portable<br />

Dictionary <strong>of</strong> The Vascular Plants. Cambridge University<br />

press, Cambridge, 858pp.<br />

McKee, K.L. (2005). Global change impacts on mangrove<br />

ecosystems. Electronic database accessible at http://www.<br />

nwrc.usgs.gov/ factshts/2004-3125.pdf. Geological Survey<br />

National Wetlands Research Center, Lafayette, U.S.<br />

Mandal, R.N. & K.R. Naskar (2008). Diversity and<br />

classification <strong>of</strong> Indian Mangroves: a review. Tropical<br />

Ecology 49(2): 131–146.<br />

Nehru, P. & P. Balasubramanian (2011). Re-colonizing<br />

mangrove species in tsunami devastated habitats at Nicobar<br />

Islands, India. CheckList 7(3): 253–256.<br />

Polidoro, B.A., K.E. Carpenter, L. Collins, N.C. Duke, A.M.<br />

Ellison, J.C. Ellison, E.J. Farnsworth, E.S. Fernando, K.<br />

Kathiresan, N.E. Koedam, S.R. Livingstone, T. Miyagi,<br />

G.E. Moore, V.N. Nam, J.E. Ong, J.H. Primavera,<br />

S.G. Salmo III, J.C. Sanciangco, S. Sukardjo, Y. Wang<br />

& J.W.H. Yong (2010). The Loss <strong>of</strong> Species: Mangrove<br />

Extinction Risk and Geographic Areas <strong>of</strong> Global Concern.<br />

Plos One 5(4): 1–10.<br />

Porwal, M.C., H. Padalia & P.S. Roy (<strong>2012</strong>). Impacts <strong>of</strong><br />

tsunami on the forest and biodiversity richness in Nicobar<br />

Islands (Andaman and Nicobar Islands), India. Biodiversity<br />

and Conservation 21: 1267–1287.<br />

Ramachandran, S., S. Anitha, V. Balamurugan, K.<br />

Dharanirajan, K.E. Vendhan, M.I.P. Divien, A.S. Vel,<br />

I.S. Hussain & A. Udayaraj (2005). Ecological impact <strong>of</strong><br />

tsunami on Nicobar Islands (Camorta, Katchal, Nancowry<br />

and Trinkat). Current Science 89(1): 195–200.<br />

Sankaran, R. (2005). Impact <strong>of</strong> the earthquake and the<br />

tsunami on the Nicobar Islands, pp. 10–77. In: Kaul, R. &<br />

V. Menon (eds.). The Ground Beneath The Waves: Posttsunami<br />

Impact Assessment <strong>of</strong> Wildlife and Their Habitats<br />

in India—Vol. 2 - The Islands. Wildlife Trust <strong>of</strong> India, New<br />

Delhi, 103pp.<br />

Sivakumar, K. (2007). Impact <strong>of</strong> the 2004 tsunami on the<br />

Vulnerable Nicobar megapode Megapodius nicobariensis.<br />

Oryx 44(1): 71–78.<br />

Sridhar, R., T. Thangaradjou, L. Kannan, A. Ramachandran<br />

& S. Jayakumar (2006). Rapid assessment on the impact<br />

<strong>of</strong> tsunami on mangrove vegetation <strong>of</strong> the Great Nicobar<br />

Island. <strong>Journal</strong> <strong>of</strong> the Indian Society <strong>of</strong> Remote Sensing<br />

34(1): 89–93.<br />

Valiela, I., J.L. Bowen & J.K. York (2001). Mangrove forests:<br />

one <strong>of</strong> the world’s threatened major tropical environments.<br />

BioScience 51(10): 807-815.<br />

Yi-Feng, Y., S. Bera, K. Naskar, L. Wen-Bo, L. Cheng-Sen<br />

(2011). A comparative study <strong>of</strong> mangrove floras in China<br />

and India. Forestry studies in China 13(3): 173–182.<br />

3400<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3395–3400


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3401–3409<br />

Status, threats and conservation strategies for orchids <strong>of</strong><br />

western Himalaya, India<br />

Jeewan Singh Jalal<br />

Botanical Survey <strong>of</strong> India, Western Regional Centre, 7 Koregaon Road, Pune, Maharashtra 411001, India<br />

Email: jeewansinghjalal@rediffmail.com<br />

Abstract: The present study is an attempt to give an account<br />

<strong>of</strong> the current status <strong>of</strong> orchids based on recent surveys since<br />

2002 to 2010 in various parts <strong>of</strong> western Himalaya. Based on<br />

rarity Index <strong>of</strong> species, orchids are categorised in four groups,—<br />

very rare, sparse, occasional and common. Results show that<br />

40% <strong>of</strong> orchid species are very rare, 26% are sparse, 19% are<br />

occasional and 15% are common in western Himalaya. For<br />

the conservation <strong>of</strong> orchids, two orchid conservation areas are<br />

identified in Gori Valley and Mandal Valley.<br />

Keywords: Conservation, Gori Valley, Mandal Valley, orchids,<br />

Western Himalaya.<br />

The International Union for Conservation <strong>of</strong> Nature<br />

(IUCN) has played a major role in focusing global<br />

concern on the loss or extinction <strong>of</strong> species and is now<br />

the accepted authority on such matters. The first Red<br />

Data Book was launched by IUCN in 1966. Now,<br />

it is revised annually and called the IUCN Red List,<br />

which is available in its electronic version since 2000.<br />

Threats to orchid species in the Indian region were first<br />

documented by Pradhan (1971, 1975a,b) and Pradhan<br />

(1975). Pradhan (1978) contributed the first red data<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Pankaj Kumar<br />

Manuscript details:<br />

Ms # o3062<br />

Received 09 January <strong>2012</strong><br />

Final received 08 August <strong>2012</strong><br />

Finally accepted 29 October <strong>2012</strong><br />

Citation: Jalal, J.S. (<strong>2012</strong>). Status, threats and conservation strategies<br />

for orchids <strong>of</strong> western Himalaya, India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15):<br />

3401–3409.<br />

Copyright: © Jeewan Singh Jalal <strong>2012</strong>. Creative Commons Attribution<br />

3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> this article in any<br />

medium for non-pr<strong>of</strong>it purposes, reproduction and distribution by providing<br />

adequate credit to the authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The author is thankful to Dr. Paramjith Singh, Director,<br />

Botanical Survey <strong>of</strong> India for encouragement and facilities. Thanks to<br />

Ministry <strong>of</strong> Environment and Forests, Government <strong>of</strong> India and Department<br />

<strong>of</strong> Science and Technology, Government <strong>of</strong> India for financial support to<br />

carry out this work.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

sheet on Indian orchids to the IUCN Plant Red Data<br />

Book, which served as a model for the production<br />

<strong>of</strong> Red Data Book <strong>of</strong> Indian Plants. Nayar & Sastry<br />

(1987, 1988, 1990), listed 58 species threatened in<br />

India. It also included 13 orchid species <strong>of</strong> western<br />

Himalaya. In 1984, under the banner <strong>of</strong> IUCN, the<br />

Orchid Specialist Group (OSG) was established for<br />

orchid conservation. It has many regional groups;<br />

ISROSG—Indian Subcontinent Regional Orchid<br />

Specialist Group covers the Indian subcontinental<br />

region. In the international scenario, several treaties<br />

have been formulated for the protection <strong>of</strong> biodiversity<br />

as a whole, which encompasses the protection <strong>of</strong> wild<br />

orchids also. The Convention <strong>of</strong> International Trade in<br />

Endangered Species <strong>of</strong> Wild Fauna and Flora (CITES),<br />

ratified by India, places all species <strong>of</strong> Orchidaceae<br />

under Appendix II, meaning thereby that their trade<br />

will be only through export permits.<br />

Orchids are one such group <strong>of</strong> plants which grow<br />

in a variety <strong>of</strong> habitats throughout the globe, but<br />

they are very sensitive to habitat change. A number<br />

<strong>of</strong> species are rare and threatened throughout the<br />

world, including western Himalaya, owing to habitat<br />

degradation and fragmentation as a result <strong>of</strong> various<br />

anthropogenic influences such as land development<br />

activities, building <strong>of</strong> dams, constructions <strong>of</strong> roads,<br />

commercial exploitation <strong>of</strong> the species, overgrazing<br />

and frequent forest fires. Some orchid species require<br />

unique habitat and microhabitats so they are confined<br />

to particular elevations and forest types. Some are<br />

naturally rare; others are so because <strong>of</strong> geographic<br />

distribution, narrow habitat requirements, and lowdensity<br />

populations. Several species that have<br />

been reported earlier from the region have not been<br />

recollected, thus indicating their possible disappearance<br />

due to habitat changes. As most <strong>of</strong> the orchids are<br />

insect pollinated, the depletion in the population <strong>of</strong><br />

insect pollinators may also lead to the depletion in the<br />

population <strong>of</strong> particular orchid species. The present<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409 3401


Orchids <strong>of</strong> western Himalaya<br />

study is an attempt to give an account <strong>of</strong> the present<br />

status <strong>of</strong> orchids based on recent surveys.<br />

Material and Methods<br />

Study area: The study was conducted in western<br />

Himalaya <strong>of</strong> India that lies between 28 0 45’– 36 0 20’N &<br />

73 0 26’–80 0 24’E (Image 1). The landmass encompasses<br />

three states viz., Uttarakhand (UK), Himachal Pradesh<br />

(HP) and Jammu & Kashmir (JK), occupies roughly<br />

331,402km² area, which is approximately 10.08%<br />

<strong>of</strong> India’s total geographic area. Altitude varies from<br />

300–7800 m.<br />

Data collection: Data was collected from three<br />

different sources:<br />

J.S. Jalal<br />

(i) Herbaria: The Botanical Survey <strong>of</strong> India,<br />

Northern Circle (BSD), Forest Research Institute (DD),<br />

Wildlife Institute <strong>of</strong> India (WII), Kumaun University<br />

Nainital (NTL), H.N.B Garhwal University, Srinagar<br />

(GUH) and Punjab University Herbarium (PAN)<br />

were visited and data on habitat, locality, altitude and<br />

flowering were gathered. Based on this information<br />

past localities from where the species were collected<br />

were also visited, to know the present status and<br />

changes in population-size.<br />

(ii) Review <strong>of</strong> literature: Significant literature,<br />

namely, Collett (1902), Duthie (1906), Raizada et al.<br />

(1981), Vij et al. (1982, 1983), Chowdhery & Wadhwa<br />

(1984), Deva & Naithani (1986), Pangtey et al. (1991)<br />

Image 1. Map <strong>of</strong> western Himalaya<br />

3402<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409


Orchids <strong>of</strong> western Himalaya<br />

and various research papers published in national and<br />

international journals were used.<br />

(iii) Field survey: Extensive field surveys<br />

conducted from 2002 to 2010 in different seasons and<br />

various localities covering altitudes from 300–4800 m.<br />

Various parameters such as habit, altitude, forest types<br />

and associate species were recorded. The elevation<br />

zone was divided into nine 500m intervals between<br />

300m and 4800m (the higher limit <strong>of</strong> the orchids in<br />

western Himalaya is 4800m), with the starting zone<br />

4000m. Eighteen habitat types<br />

were identified for orchids, based on species presence<br />

in each habitat.<br />

No assessment has been done for the conservation<br />

status <strong>of</strong> orchids in the past for this region hence<br />

assigning IUCN categories is somewhat impractical<br />

here. In most <strong>of</strong> the cases, information is missing even<br />

when they were not collected for more than 100 years.<br />

These species were kept in doubtful categories and are<br />

not included in the analysis (Table 1).<br />

Data analysis: A formula was developed for<br />

convenience to assign a status at local level to each<br />

species. Six quantification parameters were taken for<br />

assessing orchids (Table 2). For getting the rarity<br />

value (R) (on the scale <strong>of</strong> rarity index; 1–5), the sum<br />

<strong>of</strong> all six parameters were divided by six. The species<br />

with the least number were ranked rarer in comparison<br />

with those with greater values. All the data were<br />

entered in an Excel spreadsheet and summarized using<br />

descriptive statistics.<br />

R =<br />

h 1 +s 1 +a 1 +wh 1 +p 1 +p 2<br />

____________________________<br />

6<br />

where h 1 —number <strong>of</strong> habitats, s 1 —number <strong>of</strong><br />

sites, a 1 —altitudinal distribution, wh 1 —distribution in<br />

western Himalaya, p 1 —phytogeographical distribution<br />

within the Indian subcontinent, p 2 —phytogeographical<br />

distribution globally.<br />

Rarity ranking (very rare: 1–2, sparse: 2.1–3,<br />

occasional: 3.1–4, common: 4.1–5).<br />

Results and Discussion<br />

Status <strong>of</strong> orchids: It is very difficult to make<br />

an accurate account <strong>of</strong> orchid species <strong>of</strong> western<br />

Himalaya, with its vast size, remoteness and varied<br />

topographic conditions. The study reveals that 40%<br />

(88) <strong>of</strong> orchid species are very rare, 26% are sparse,<br />

19% are occasional and 15% are common in western<br />

Table 1. List <strong>of</strong> doubtful species<br />

Sno<br />

Species<br />

1 Anoectochilus roxburghii<br />

2 Aphyllorchis gollani<br />

3 Arundina graminifolia<br />

4 Calanthe alismifolia<br />

5 Calanthe brevicornu<br />

6 Chiloschista usneoides<br />

7 Coelogyne flaccida<br />

8 Coelogyne nitida<br />

9 Cymbidium eburneum<br />

10 Cymbidium longifolium<br />

11 Dendrobium moschatum<br />

12 Dendrobium transparens<br />

13 Diphylax urceolata<br />

14 Eulophia mackinnonii<br />

15 Eulophia obtusa<br />

16 Gastrochilus garhwalensis<br />

17 Geodorum densiflorum<br />

18 Habenaria longifolia<br />

19 Liparis cordifolia<br />

20 Liparis nervosa<br />

21 Oberonia iridifolia<br />

22 Spiranthes spiralis<br />

J.S. Jalal<br />

Himalaya (Fig. 1; Appendix 1).<br />

Threats to orchids: Orchids are a highly specialized<br />

group <strong>of</strong> plants and have modified themselves in such<br />

a way that they occur in almost every ecosystem. They<br />

have a peculiar habit <strong>of</strong> interdependence on mycorrhiza<br />

for germination and nutrition. Any imbalance in<br />

the habitat can cease the regeneration and growth<br />

<strong>of</strong> orchids. Thus, they are more vulnerable to the<br />

destruction <strong>of</strong> habitat. Orchids are usually threatened<br />

due to habitat loss, degradation and fragmentation.<br />

These can be caused by natural threats, anthropogenic<br />

pressures and threats posed by invasive species.<br />

1. Natural threats: Due to the undulating topography<br />

and the varying geological set up <strong>of</strong> western Himalaya,<br />

several areas have been identified that are prone<br />

to landslides, floods etc., which affect the natural<br />

population <strong>of</strong> many terrestrial and epiphytic orchids<br />

leading to their extinction. Many host trees growing<br />

along the river banks at lower and mid altitudes are<br />

swept away by floods, thus removing several orchids.<br />

In many areas, landsides were seen to carry away the<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409<br />

3403


Orchids <strong>of</strong> western Himalaya<br />

J.S. Jalal<br />

Table 2. Quantification parameters <strong>of</strong> rarity for each orchid species<br />

Sno Parameters Documentation Scoring (Quantification)<br />

1 Number <strong>of</strong> Habitats (h¹)<br />

2 Number <strong>of</strong> Sites (s¹)<br />

3 Altitudinal distribution (a¹)<br />

4<br />

5<br />

6<br />

Distribution in western<br />

Himalaya (wh¹)<br />

Phytogeographical<br />

Distribution (p¹)<br />

Phytogeographical<br />

Distribution (p²)<br />

Number <strong>of</strong> habitats in which each orchid species<br />

were found was recorded.<br />

Number <strong>of</strong> sites in which each orchid was found<br />

was recorded.<br />

4000m (total 9 zones) depending on<br />

how many species occurred in a particular zone.<br />

Divided in to 4 divisions<br />

1. Srinagar valley, Leh, Kargil and Lahul & Spiti<br />

2. Jammu and its adjoining districts and<br />

Himachal Pradesh (except Lahul & Spiti)<br />

3. Garhwal division<br />

4. Kumaun Division<br />

Indian sub-continents (Pakistan, Nepal, Bhutan,<br />

northeastern states, Sri Lanka, Bangladesh)<br />

Europe, Sino-Japan, China, Indo-Malaya, Africa,<br />

Australia, North and South America<br />

1 to 18 habitats depending on how many habitats,<br />

a particular orchid occurred in.<br />

“1” for single site;<br />

“2” for


Orchids <strong>of</strong> western Himalaya<br />

epiphytic orchids have reduced the abundance <strong>of</strong> these<br />

epiphytic orchids.<br />

Developmental activities: New roads, dams,<br />

mines, buildings and other developments strongly<br />

contribute to habitat loss in this region, not only<br />

directly by damaging forests but also indirectly by<br />

displacing them. A typical example is the Snow<br />

Orchid Diplomeris hirsuta which was reported from<br />

Dogaon near Nainital and this was the only locality<br />

in western Himalaya where it was found at the time.<br />

This locality is very close to the National Highway<br />

87. Naturally, this species is confined to fragile sand<br />

stone rocks in the foothills <strong>of</strong> the area. In 1996, the<br />

state government took a decision to widen National<br />

Highway 87, the rocks where the species were growing<br />

were destroyed and the only remaining population <strong>of</strong><br />

the species vanished from the area. Recent surveys<br />

show only a small remaining population ca. 110<br />

individuals <strong>of</strong> this species growing in a nearby locality.<br />

Another example <strong>of</strong> developmental activities is Tehri<br />

Dam (Uttarakhand). It is one <strong>of</strong> the largest dams in<br />

Asia with a submerge area <strong>of</strong> 44km 2 . This submerge<br />

stretch was entirely covered by many small patches <strong>of</strong><br />

riverine forests which were an ideal habitat for many<br />

epiphytic orchids.<br />

Over exploitation: Although very few orchid<br />

species are medicinally important in the study area,<br />

over exploitation <strong>of</strong> these species coupled with a lack<br />

<strong>of</strong> awareness, has resulted in their becoming very rare<br />

and endangered in natural population and they are<br />

bound to become extinct in the near future. Terrestrial<br />

orchids such as Crepidium acuminatum, Malaxis<br />

muscifera, Platanthera edgworthii, Eulophia dabia<br />

and Dactylorhiza hatagirea are used in the preparation<br />

<strong>of</strong> various medicines by pharmaceutical companies.<br />

They have been subjected to ruthless collection from<br />

their natural habitats.<br />

Overgrazing: The high altitude grasslands, pastures<br />

and meadows are very important habitats for many<br />

alpine orchids. These habitats are facing threats due to<br />

overgrazing practices by many pastoral communities.<br />

The foothills <strong>of</strong> the study area are inhabited by<br />

small groups <strong>of</strong> nomadic pastoral communities such<br />

as Gujjars in Siwalik zone, Himachal Pradesh and<br />

Jammu, and Bokshas and Tharus in the eastern Tarai<br />

zone. They are forest dwelling, semi-nomadic and<br />

pastoral indigenous communities. They own large<br />

herds <strong>of</strong> cattle and use forest land for grazing. The<br />

J.S. Jalal<br />

cattle were <strong>of</strong>ten found to be eating not only young<br />

flowering buds but also whole orchid plants.<br />

Forest fires: Forest fires are another cause <strong>of</strong> the<br />

destruction <strong>of</strong> orchid host trees and <strong>of</strong> the thick layer<br />

<strong>of</strong> humus as well as <strong>of</strong> the pollinators. The forest is<br />

<strong>of</strong>ten set on fire by the local communities during the<br />

summer season to get a good growth <strong>of</strong> grass following<br />

the rains. Sometimes it spreads and destroys vast<br />

tracts <strong>of</strong> valuable forests. During the study, many<br />

orchid rich localities were found to be affected by fire.<br />

For epiphytic orchids, fires at any time <strong>of</strong> the year<br />

can cause a drastic change in plant abundance. They<br />

are mainly affected by burning <strong>of</strong> plants, degrading<br />

or removal <strong>of</strong> the support substrate and alteration<br />

<strong>of</strong> the microclimate resulting from fragmentation <strong>of</strong><br />

the canopy. In many places, which were affected by<br />

previous fires, this phenomenon was observed, but<br />

this has hardly affected the terrestrial orchids such as<br />

Nervilia spp., which were seen in good abundance.<br />

3. Threats by invasive species:<br />

It was observed during the study that some invasive<br />

species were suppressing the growth <strong>of</strong> native flora<br />

including orchids, in many important orchid habitats.<br />

A large tract <strong>of</strong> the foothills and upper Himalayan<br />

range up to 2500m has been largely encroached by<br />

invasive species such as Eupatorium adenophorum,<br />

Eupatorium odoratum, Eupatorium riparium, Lantana<br />

camara, Parthenium hysterophorus and Ageratum<br />

conyzoides. Their multifaceted adaptability and fast<br />

replicating characteristics have created a serious threat<br />

to the indigenous flora including orchids. Several<br />

terrestrial orchid species were found to be shockingly<br />

less in number in such habitats. Orchids that face<br />

threats by these alien species are Eulophia spp., Liparis<br />

deflexa, Nervilia spp., Goodyera procera, Habenaria<br />

marginata, H. plantaginea, H. pubescens, Pachystoma<br />

pubescens, Peristylus constrictus, P. goodyeroides,<br />

P. lawii etc. Various dead host species were seen<br />

heavily loaded with epiphytic orchids in the study area<br />

particularly in riverine belts. After death, the bark <strong>of</strong><br />

the tree gets loose and as the epiphytic orchids attach<br />

themselves mainly on the surface <strong>of</strong> the bark, these<br />

epiphytic orchids <strong>of</strong>ten fall to the ground due to their<br />

own weight and die.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409<br />

3405


Orchids <strong>of</strong> western Himalaya<br />

Strategies for conservation<br />

Conservation is “the maintenance <strong>of</strong> essential<br />

ecological processes and life-support systems, the<br />

preservation <strong>of</strong> genetic diversity and the sustainable<br />

utilization <strong>of</strong> species and ecosystems” (Talbot 1980).<br />

Orchids are an endangered plant group and protected<br />

by national or local laws in many countries including<br />

India. International trade and collection <strong>of</strong> orchids from<br />

the wild is banned. The wide range <strong>of</strong> distribution and<br />

habitats <strong>of</strong> orchids makes it difficult to have a uniform<br />

code for conservation. The western Himalaya is such<br />

a vast landscape spread over a 331,402km² area and<br />

the distribution <strong>of</strong> orchids is very patchy so it is very<br />

difficult to conserve each and every forest patch. The<br />

question is: ‘Which area should be selected for orchid<br />

conservation?’ the answer has to be given after a<br />

thorough evaluation <strong>of</strong> many aspects.<br />

Identifying Orchid Conservation Areas (OCAs)<br />

In order to conserve the orchids, it was necessary<br />

to identify orchid conservation areas (OCA). Various<br />

parameters were used to select a conservation area.<br />

First a region wise orchid Index was calculated (Table<br />

3). That was calculated as the ratio <strong>of</strong> the number<br />

<strong>of</strong> orchids in a particular region multiplied by 1000<br />

(IUCN 1996). This helped to get a broad region for<br />

selection. After getting the orchid index value the<br />

focus moved to the region that indicated the maximum<br />

value. Kumaun region showed the maximum value<br />

at 9.69 followed by Garhwal region at 5.33. Based<br />

on past and present records, two areas were found to<br />

be suitable for OCAs. One is Gori Valley in eastern<br />

Kumaun and the other is Mandal Valley in Chamoli<br />

District <strong>of</strong> Garhwal.<br />

Suggestive measures for conservation<br />

As mentioned above, all the orchids are threatened<br />

in the study area. For their long term survival in nature,<br />

they need to be protected through in situ and ex situ<br />

conservation. In situ orchid conservation and habitat<br />

preservation is the first line <strong>of</strong> defense for safeguarding<br />

orchid species for the future. The following measures<br />

are suggested for the long term conservation <strong>of</strong> orchids<br />

in western Himalaya:<br />

(i) 145 species, which are very rare and<br />

sparse in the study area, need immediate action for<br />

conservation.<br />

(ii) Banj-oak forests and riverine forests should be<br />

Table 3. Orchid Index table<br />

Sno<br />

Geographical region<br />

J.S. Jalal<br />

protected region wise. Initiate ecological restoration<br />

<strong>of</strong> degraded riverine forests and promote afforestation<br />

<strong>of</strong> suitable host tree species such as Toona ciliata,<br />

Engelhadrtia spicata and Quercus leucotrichophora.<br />

(iii) Endemic and near endemic species need<br />

special attention. For example, Peristylus kumaonensis<br />

is an endemic orchid reported by Dr. J. Renz in 1983<br />

from a locality that is 5km from Nainital towards the<br />

north, on the way to Ratighat at an altitude <strong>of</strong> 1800m<br />

and it is restricted to this area alone. At that time, almost<br />

130 individuals were counted in this particular locality<br />

(Y.P.S. Pangtey pers. comm. August 2004). During<br />

the current survey a drastic change in the whole area<br />

was observed due to anthropogenic pressures and the<br />

population now remains around 30 individuals only.<br />

(iv) Urgent need to conduct a population<br />

monitoring program together with orchid ecology<br />

so that we can use this information to design orchid<br />

conservation plans for the intact regions <strong>of</strong> habitat<br />

where orchids still thrive.<br />

(v) Establishment <strong>of</strong> orchid seed bank and germ<br />

plasm banks. The conservation <strong>of</strong> seeds is the most<br />

effective means <strong>of</strong> genetic conservation.<br />

(vi) Local people should be made aware <strong>of</strong> this<br />

wealth by means <strong>of</strong> awareness programs. Orchid<br />

conservation areas can be developed for tourists and<br />

college students so that they can visit these areas<br />

during their educational trips.<br />

References<br />

Area<br />

(km²)<br />

Total<br />

Species<br />

Orchid<br />

Index<br />

1 Jammu & Kashmir 222,236 46 0.21<br />

2 Himachal Pradesh 55,673 76 1.36<br />

3 Garhwal region 32,448 173 5.33<br />

4 Kumaun Region 21,035 204 9.69<br />

Chowdhery, H.J. & B.M. Wadhwa (1984). Flora <strong>of</strong> Himachal<br />

Pradesh. Vol. 3. Botanical Survey <strong>of</strong> India, Calcutta, 680–<br />

860pp.<br />

Collett, H. (1902). Flora <strong>of</strong> Simlensis. Thacker, Spink and Co.,<br />

Simla, xvii+652.<br />

Deva, S. & H.B. Naithani (1986). The Orchid Flora <strong>of</strong> North-<br />

West Himalaya. Print and Media Associates, New Delhi,<br />

459pp.<br />

3406<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409


Orchids <strong>of</strong> western Himalaya<br />

Duthie, J.F. (1906). The Orchids <strong>of</strong> the North-Western<br />

Himalaya. Annals <strong>of</strong> the Royal Botanical Garden, Calcutta,<br />

9(2): 81–211.<br />

IUCN/SSC Orchid Specialist Group (1996). Orchids -<br />

Status Survey and Conservation Action Plan. IUCN,<br />

Gland Switzerland and Cambridge, UK, vi+153pp. (Vol 1:<br />

xiii+367pp. Vol 2: 268pp. Vol 3: 271pp).<br />

Pangtey, Y.P.S., S.S. Samant & G.S. Rawat (1991). Orchids<br />

<strong>of</strong> Kumaon Himalaya. Bishan Singh Mahendra Pal Singh,<br />

Dehradun, 193pp.<br />

Pradhan, G.M. (1975). Habitat destruction <strong>of</strong> Himalayan orchid<br />

jungles, pp. 193–198. In: Senghas, K. (ed.). Proceedings <strong>of</strong><br />

Eigth World Orchid Conference. German Orchid Society,<br />

Frankfurt, 555pp.<br />

Pradhan, U.C. (1971). Orchid conservation attempts in Sikkim<br />

and E. India. American Orchid Society Bulletin 40: 4.<br />

Pradhan, U.C. (1975a). Conservation <strong>of</strong> Eastern Himalayan<br />

orchids: problems and prospects, pp. 335–340. In: Senghas,<br />

K. (ed.). Proceedings <strong>of</strong> Eigth World Orchid Conference.<br />

German Orchid Society, Frankfurt, 555pp.<br />

J.S. Jalal<br />

Pradhan, U.C. (1975b). The Himalayan Cypripediums, pp.<br />

199-204. In: Senghas, K. (ed.) Proceedings <strong>of</strong> Eigth World<br />

Orchid Conference. German Orchid Society, Frankfurt,<br />

555pp.<br />

Pradhan, U.C. (1976). Indian Orchids. Guide to Identification<br />

and Culture I. Bharat Lithographing Co., 188pp.<br />

Raizada, M.B., H.B. Naithani & H.O. Saxena (1981).<br />

Orchids <strong>of</strong> Mussoorie. Bishan Singh Mahendra Pal Singh,<br />

Dehradun, 100pp.<br />

Talbot, L.M. (1980). The World’s Conservation Strategy.<br />

Environmental Conservation 7: 259–268.<br />

Vij, S.P., I.S. Toor & N. Skekhar (1982). Observations on<br />

orchidaceous flora <strong>of</strong> Simla and adjacent hills in the NW<br />

Himalayas (ecology and distribution). Research Bulletin <strong>of</strong><br />

Panjab University 33(3&4): 163–175.<br />

Vij, S.P., N. Shekhar, S.K. Kashyap & A.K. Garg (1983).<br />

Observations on the orchids <strong>of</strong> Nainital and adjacent hills in<br />

the Central Himalaya (Ecology and Distribution). Research<br />

Bulletin. Panjab University 34(3): 63–76.<br />

Appendix I. List <strong>of</strong> orchids and their status<br />

Species Habit Status<br />

1 Acampe carinata E C<br />

2 Acampe rigida E SP<br />

3 Aerides multiflora E C<br />

4 Aerides odorata E C<br />

5 Androcorys josephi T SP<br />

6 Androcorys monophylla T O<br />

7 Androcorys pugioniformis T SP<br />

8 Ascocentrum ampullaceum E VR<br />

9 Brachycorythis obcordata T C<br />

10 Bulbophyllum affine E O<br />

11 Bulbophyllum careyanum E SP<br />

12 Bulbophyllum cariniflorum E O<br />

13 Bulbophyllum helenae E VR<br />

14 Bulbophyllum hirtum E VR<br />

15 Bulbophyllum hookeri E VR<br />

16 Bulbophyllum leopardinum E VR<br />

17 Bulbophyllum polyrhizum E SP<br />

18 Bulbophyllum reptans E O<br />

19 Bulbophyllum triste E O<br />

20 Bulbophyllum umbellatum E O<br />

21 Bulbophyllum wallichii E VR<br />

22 Calanthe alpina T VR<br />

23 Calanthe mannii T VR<br />

24 Calanthe pachystalix T VR<br />

25 Calanthe plantaginea T SP<br />

26 Calanthe puberula T SP<br />

Species Habit Status<br />

27 Calanthe tricarinata T C<br />

28 Cephalanthera longifolia T C<br />

29 Cheirostylis griffithii T SP<br />

30 Cleisostoma aspersum E VR<br />

31 Coeloglossum viride T SP<br />

32 Coelogyne cristata E C<br />

33 Coelogyne ovalis E O<br />

34 Coelogyne stricta E SP<br />

35 Corallorhiza trifida H VR<br />

36 Crepidium acuminatum T C<br />

37 Crepidium biauritum T VR<br />

38 Crepidium mackinnonii T VR<br />

39 Crepidium purpureum T O<br />

40 Cryptochilus luteus E VR<br />

41 Cymbidium aloifolium E SP<br />

42 Cymbidium cyperifolium E SP<br />

43 Cymbidium hookerinum E SP<br />

44 Cymbidium iridoides E O<br />

45 Cymbidium macrorhizon H SP<br />

46 Cypripedium cordigerum T SP<br />

47 Cypripedium elegans T VR<br />

48 Cypripedium himalaicum T VR<br />

49 Dactylorhiza hatagirea T O<br />

50 Dactylorhiza kafiriana T VR<br />

51 Dendrobium amoenum E O<br />

52 Dendrobium aphyllum E SP<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409<br />

3407


Orchids <strong>of</strong> western Himalaya<br />

J.S. Jalal<br />

Species Habit Status<br />

53 Dendrobium bicameratum E C<br />

54 Dendrobium candidum E SP<br />

55 Dendrobium chrysanthum E SP<br />

56 Dendrobium chryseum E O<br />

57 Dendrobium crepidatum E SP<br />

58 Dendrobium denudans E SP<br />

59 Dendrobium fimbriatum E VR<br />

60 Dendrobium fugax E SP<br />

61 Dendrobium hesperis E VR<br />

62 Dendrobium heterocarpum E VR<br />

63 Dendrobium monticola E SP<br />

64 Dendrobium primulinum E O<br />

65 Didiciea cunninghamii T VR<br />

66 Diphylax griffithii T SP<br />

67 Diplomeris hirsuta T VR<br />

68 Epipactis gigantea T VR<br />

69 Epipactis helleborine T C<br />

70 Epipactis veratrifolia T O<br />

71 Epipogium aphyllum H VR<br />

72 Epipogium roseum H VR<br />

73 Eria alba E O<br />

74 Eria amica E VR<br />

75 Eria bipunctata E O<br />

76 Eria coronaria E VR<br />

77 Eria globulifera E VR<br />

78 Eria graminifolia E VR<br />

79 Eria lasiopetala E O<br />

80 Eria muscicola E VR<br />

81 Eria occidentalis E VR<br />

82 Eria reticosa E VR<br />

83 Eria spicata E O<br />

84 Eulophia bicallosa T VR<br />

85 Eulophia dabia T SP<br />

86 Eulophia explanata T VR<br />

87 Eulophia flava T VR<br />

88 Eulophia graminea T VR<br />

89 Eulophia herbacea T VR<br />

90 Galearis roborovskyi T VR<br />

91 Galearis spathulata T SP<br />

92 Galeola falconeri H VR<br />

93 Gastrochilus acutifolius E VR<br />

94 Gastrochilus calceolaris E C<br />

95 Gastrochilus distichus E SP<br />

96 Gastrodia falconeri H VR<br />

97 Goodyera biflora T O<br />

98 Goodyera foliosa T VR<br />

Species Habit Status<br />

99 Goodyera fusca T SP<br />

100 Goodyera procera T O<br />

101 Goodyera repens T C<br />

102 Goodyera viridiflora T O<br />

103 Goodyera vittata T VR<br />

104 Gymnadenia orchidis T SP<br />

105 Habenaria aitchisonii T O<br />

106 Habenaria arietina T SP<br />

107 Habenaria commelinifolia T VR<br />

108 Habenaria digitata T SP<br />

109 Habenaria diphylla T SP<br />

110 Habenaria ensifolia T SP<br />

111 Habenaria furcifera T SP<br />

112 Habenaria intermedia T C<br />

113 Habenaria marginata T O<br />

114 Habenaria pectinata T C<br />

115 Habenaria plantaginea T O<br />

116 Habenaria pubescens T VR<br />

117 Habenaria stenopetala T SP<br />

118 Hemipilia cordifolia T O<br />

119 Herminium kumaunensis T VR<br />

120 Herminium lanceum T C<br />

121 Herminium mackinnonii T VR<br />

122 Herminium monorchis T SP<br />

123 Ione bicolor E SP<br />

124 Liparis caespitosa E SP<br />

125 Liparis deflexa T VR<br />

126 Liparis glossula T O<br />

127 Liparis paradoxa T SP<br />

128 Liparis platyrachis E VR<br />

129 Liparis resupinata T VR<br />

130 Liparis rostrata T C<br />

131 Liparis viridiflora T O<br />

132 Luisia brachystachys E VR<br />

133 Luisia trichorrhiza E O<br />

134 Luisia tristis E C<br />

135 Luisiopsis inconspicuua E SP<br />

136 Malaxis cylindrostachya T O<br />

137 Malaxis latifolia T VR<br />

138 Malaxis muscifera T C<br />

139 Neottia acuminata H VR<br />

140 Neottia inayatii H VR<br />

141 Neottia listeroides H O<br />

142 Neottia longicaulis T VR<br />

143 Neottia mackinnonii H VR<br />

144 Neottia microglottis H VR<br />

3408<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409


Orchids <strong>of</strong> western Himalaya<br />

J.S. Jalal<br />

Species Habit Status<br />

145 Neottia nandadeviensis T VR<br />

146 Neottia ovata T VR<br />

147 Neottia pinetorum T VR<br />

148 Neottia tenuis T SP<br />

149 Neottianthe calcicola T VR<br />

150 Neottianthe secundiflora T VR<br />

151 Nervilia aragoana T O<br />

152 Nervilia crociformis T C<br />

153 Nervilia falcata T VR<br />

154 Nervilia gammieana T O<br />

155 Nervilia gleadowii T VR<br />

156 Nervilia infundibulifolia T VR<br />

157 Nervilia mackinnonii T O<br />

158 Nervilia pangteyiana T VR<br />

159 Nervilia plicata T SP<br />

160 Oberonia acaulis E SP<br />

161 Oberonia caulescens E VR<br />

162 Oberonia ensiformis E SP<br />

163 Oberonia falconeri E O<br />

164 Oberonia griffithiana E VR<br />

165 Oberonia myosurus E VR<br />

166 Oberonia pachyrachis E O<br />

167 Oberonia prainiana E VR<br />

168 Oberonia pyrulifera E SP<br />

169 Oreorchis foliosa T SP<br />

170 Oreorchis foliosa var. indica T SP<br />

171 Oreorchis micrantha T O<br />

172 Ornithochilus difformis E O<br />

173 Otochilus lancilabius E VR<br />

174 Pachystoma pubescens T SP<br />

175 Pecteilis gigantea T SP<br />

176 Pecteilis triflora E VR<br />

177 Pelatantheria insectifera E VR<br />

178 Peristylus affinis T SP<br />

179 Peristylus constrictus T C<br />

180 Peristylus duthiei T SP<br />

181 Peristylus elisabethae T C<br />

182 Peristylus fallax T C<br />

Species Habit Status<br />

184 Peristylus kumaonensis T VR<br />

185 Peristylus lawii T VR<br />

186 Phaius tankervilleae T SP<br />

187 Phalaenopsis deliciosa E VR<br />

188 Phalaenopsis taenialis E SP<br />

189 Pholidata articulata E C<br />

190 Pholidata imbricata E C<br />

191 Platanthera arcuata T VR<br />

192 Platanthera clavigera T C<br />

193 Platanthera edgworthii T C<br />

194 Platanthera latilabris T C<br />

195 Platanthera leptocaulon T SP<br />

196 Platanthera stenantha T SP<br />

197 Pleione grandiflora E VR<br />

198 Pleione hookeriana E SP<br />

199 Pleione humilis E VR<br />

200 Pleione praecox E VR<br />

201 Ponerorchis chusua T O<br />

202 Ponerorchis renzii T VR<br />

203 Pteroceras teres E SP<br />

204 Rhynchostylis retusa E C<br />

205 Satyrium nepalense T C<br />

206 Satyrium nepalense var. ciliatum T VR<br />

207 Smithandia micrantha E C<br />

208 Spiranthes sinensis T C<br />

209 Thelasis longifolia E VR<br />

210 Thunia alba E C<br />

211 Thunia alba var. bracteata E SP<br />

212 Tropidia pedunculata T VR<br />

213 Vanda alpina E VR<br />

214 Vanda cristata E C<br />

215 Vanda pumila E VR<br />

216 Vanda tessellata E O<br />

217 Vanda testacea E O<br />

218 Vandopsis undulata E VR<br />

219 Zeuxine flava T SP<br />

220 Zeuxine grandis T VR<br />

221 Zeuxine strateumatica T O<br />

183 Peristylus goodyeroides T O<br />

T - Terrestrial; E - Epiphytic; H - Holomycotrophic; VR - Very rare; SP - Sparse; O - Occasional; C - Common<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3401–3409<br />

3409


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3410–3414<br />

Conservation status <strong>of</strong> Dendrobium tenuicaule Hook. f.<br />

(Orchidaceae), a Middle Andaman Island endemic, India<br />

Boyina Ravi Prasad Rao 1 , Kothareddy Prasad 2 , Madiga Bheemalingappa 3 ,<br />

Mudavath Chennakesavulu Naik 4 , K.N. Ganeshaiah 5 & M. Sanjappa 6<br />

1,2,3,4<br />

Biodiversity Conservation Division, Department <strong>of</strong> Botany, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh 515003,<br />

India<br />

5<br />

Department <strong>of</strong> Forestry and Environemental Sciences And School <strong>of</strong> Ecology and Conservation, University <strong>of</strong> Agricultural<br />

Sciences, GKVK, Bengaluru, Karnataka 560065, India<br />

6<br />

Botanical Garden, University <strong>of</strong> Agricultural Sciences, GKVK, Bengaluru, Karnataka 560065, India<br />

Email: 1 biodiversityravi@gmail.com (corresponding author), 2 prasad.orchids@gmail.com, 3 bheemantp@gmail.com,<br />

4<br />

chenna.phd@gmail.com, 5 knganeshaiah@gmail.com, 6 sanjappas@gmail.com<br />

Abstract: The current distribution and threat assessment <strong>of</strong><br />

Dendrobium tenuicaule Hook. f. (Orchidaceae), an endemic<br />

orchid <strong>of</strong> Middle Andaman Island is presented here. New data<br />

available from field surveys indicated the species is Critically<br />

Endangered as per the 2001 IUCN Red List Catagories and<br />

Criteria.<br />

Keywords: Conservation status, Critically Endangered,<br />

Dendrobium tenuicaule, distribution, Middle Andaman.<br />

Andaman and Nicobar Islands are located about<br />

1200km from the mainland, India, comprising 572<br />

islands and islets. The Middle Andaman Island (12 0 15’<br />

–13 0 N & 92 0 30’–93 0 E) (Fig. 1) is the largest among<br />

the 324 islands <strong>of</strong> the Andaman group. The Andaman<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Pankaj Kumar<br />

Manuscript details:<br />

Ms # o3186<br />

Received 28 April <strong>2012</strong><br />

Final received 13 November <strong>2012</strong><br />

Finally accepted 21 November <strong>2012</strong><br />

Citation: Rao, B.R.P., K. Prasad, M. Bheemalingappa, M.C. Naik, K.N.<br />

Ganeshaiah & M. Sanjappa (<strong>2012</strong>). Conservation status <strong>of</strong> Dendrobium<br />

tenuicaule Hook. f. (Orchidaceae), a Middle Andaman Island endemic,<br />

India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3410–3414.<br />

Copyright: © Boyina Ravi Prasad Rao, Kothareddy Prasad, Madiga<br />

Bheemalingappa, Mudavath Chennakesavulu Naik, K.N. Ganeshaiah & M.<br />

Sanjappa <strong>2012</strong>. Creative Commons Attribution 3.0 Unported License. JoTT<br />

allows unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes,<br />

reproduction and distribution by providing adequate credit to the authors<br />

and the source <strong>of</strong> publication.<br />

Acknowledgements: Authors are thankful to Dr. Murugan, Scientist C,<br />

Incharge Director, Botanical Survey <strong>of</strong> India, Port Blair. Authors also thank<br />

the forest <strong>of</strong>ficials <strong>of</strong> Middle Andaman Division for their kind help in field<br />

work. Authors acknowledge Department <strong>of</strong> Biotechnology, Government <strong>of</strong><br />

India, New Delhi for financial assistance.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

group <strong>of</strong> islands are part <strong>of</strong> Indo-Burma Biodiversity<br />

Hotspot, one <strong>of</strong> the 34 in the world (Myers et al. 2000).<br />

The climate is warm and humid with the temperature<br />

ranging between 22 0 C and 30 0 C with average annual<br />

rainfall ranging from 3000–3500 mm and mean relative<br />

humidity between 82–85%. Currently, the Andaman<br />

and Nicobar Islands are known to harbor 2650 species<br />

<strong>of</strong> plants (Pandey & Diwakar 2008), <strong>of</strong> which 308 are<br />

considered as strict endemics.<br />

Endemism is a significant attribute <strong>of</strong> any taxon<br />

with reference to its restricted distribution and<br />

endemic species especially <strong>of</strong> islands hold immense<br />

significance, as it can be assumed that the smaller<br />

its geographical distribution and population size and<br />

the more specific its habitat preferences, the rarer<br />

the species (IUCN/SSC Orchid Specialist Group,<br />

1996). An in-depth assessment <strong>of</strong> their distribution<br />

pattern within a small geographical range is <strong>of</strong> great<br />

conservation concern. The IUCN system (IUCN<br />

2001) assesses the threat to a species based on five<br />

core criteria: decline in populations over a period that<br />

is relevant for the species (based on generation time);<br />

the distribution <strong>of</strong> the species together with factors<br />

that may influence ongoing survival within its current<br />

distribution; small population size and continuing<br />

decline; very small populations or small distribution<br />

area; and quantitative assessment <strong>of</strong> extinction risk.<br />

Assessments are always done using the best available<br />

information, however, there is a dearth <strong>of</strong> knowledge<br />

in the case <strong>of</strong> the distribution pattern for many<br />

endemic species, especially those in remote islands.<br />

The recent studies by Rao et al. (2010, 2011) regarding<br />

conservation status on Cycas beddomei Dyer; and<br />

Hildegardia populifolia (Roxb.) Schott & Endl. has<br />

3410<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3410–3414


Status <strong>of</strong> Dendrobium tenuicaule<br />

B.R.P. Rao et al.<br />

Figure 1. Minimum convex<br />

polygon <strong>of</strong> Dendrobium<br />

tenuicaule.<br />

provided valuable information for population status<br />

assessments. In the present study, an attempt has been<br />

made to assess the population and conservation status<br />

<strong>of</strong> an orchid species, Dendrobium tenuicaule Hook. f.,<br />

endemic to Middle Andaman Island, India.<br />

The family Orchidaceae is one <strong>of</strong> the largest groups<br />

in the plant kingdom comprising 22,075 species<br />

(APG III 2009). The family represent 1331 taxa in<br />

India (Misra 2007) and 151 species from Andaman<br />

and Nicobar Islands (Pandey & Diwakar 2008). The<br />

genus Dendrobium Sw., is one <strong>of</strong> the largest genera<br />

<strong>of</strong> Orchidaceae represented by ca. 900 species and<br />

mostly distributed in the Indo-Malesio-Austrasian<br />

region (Kumar & Manilal 1994). In India, the genus<br />

is represented by 116 species (Misra 2007) and in<br />

Andaman and Nicobar Islands, 19 species (Pandey<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3410–3414<br />

3411


Status <strong>of</strong> Dendrobium tenuicaule<br />

& Diwakar 2008), <strong>of</strong> which three are endemic to<br />

Andaman and Nicobar Islands: Dendrobium gunnarii<br />

P.S.N. Rao, D. shompenii B.K. Sinha & P.S.N. Rao<br />

and D. tenuicaule Hook. f.<br />

Methods<br />

Study area and species: Dendrobium tenuicaule<br />

Hook. f. is endemic to Middle Andaman Island and<br />

categorised as Endangered (Balakrishnan & Rao<br />

1983; Nayar & Sastry 1990; Rao et al. 2003); Extinct<br />

or Endangered (IUCN 1996). The species is also a<br />

part in CITES Appendix II (UNEP-WCMC 2003).<br />

A perusal <strong>of</strong> literature and herbarium consultation<br />

in CAL and PBL herbaria has revealed interesting<br />

information about the species distribution. J.D. Hooker<br />

(1890) described the species based on a drawing <strong>of</strong><br />

King along with a few dried flowers and cited the<br />

distribution <strong>of</strong> the species as Andaman Islands. Later,<br />

the illustration was published in King’s Annals <strong>of</strong> the<br />

Calcutta Garden (King 1895). Since the first herbarium<br />

collection <strong>of</strong> the species was by Bhargava (Voucher<br />

No. 6372 in PBL) from Rangat forests <strong>of</strong> Middle<br />

Andaman in 1977, it was claimed as endemic to Middle<br />

Andaman Island by Nayar & Sastry (1990). There was<br />

no record <strong>of</strong> further collections <strong>of</strong> this extremely rare<br />

orchid from Middle Andaman till November, 2011<br />

in Kousalyanagar forest, Middle Andaman Division,<br />

when it was recollected by the current authors. The<br />

voucher specimens are deposited in SKU (Department<br />

<strong>of</strong> Botany, S.K.University).<br />

Dendrobium tenuicaule Hook. f. is an epiphytic<br />

orchid, with many stems clustered together and grow<br />

40cm long with rooting at base <strong>of</strong> the branches.<br />

Pseudobulbs grow to 8cm long and 5cm thick. Leaves<br />

linear, 15x2 mm, acute, entire with sheathing base.<br />

Flowers few, terminal, solitary on axils <strong>of</strong> nodes,<br />

labellum with white and yellow stripes on lip, very<br />

delicate, sweet scented. Ovary pedicellate, slender,<br />

1.5cm long. Dorsal sepal elliptic-ovate, 7-nerved;<br />

lateral sepals falcate, acute. Petals as long as sepals,<br />

lanceolate, acute, mentum twice as long as the lateral<br />

sepals, trumpet-shaped. Lip wedge-shaped, sessile<br />

at the base <strong>of</strong> the mentum, membranous; lobes thin,<br />

flimsy, rounded; mid lobe strongly bent downward,<br />

orbicular; side lobes short, erect; disc pubescent.<br />

Pollinia 4, in pairs, unequal, ellipsoid. Fruits oblongellipsoid,<br />

grayish-brown, 4–5 x 0.4–0.5cm (Image 1).<br />

Sampling design and population census: After<br />

B.R.P. Rao et al.<br />

the first sighting <strong>of</strong> the species on Mangifera indica<br />

in Kousalya Nagar Forest, an intensive survey was<br />

made in Rangat Forest Division for the next eight<br />

months taking into consideration the first historical<br />

collection in Rangat forest. Random sampling method<br />

was adopted for the study. In epiphyte ecology, the<br />

sampling unit is <strong>of</strong>ten defined as one host tree (or part<br />

there<strong>of</strong>), but unit area and unit forest-volume have<br />

also been used (van Dunne 2002). Hence we adopted<br />

IUCN sampling methodology (IUCN Standards and<br />

Petitions Subcommittee 2011) for determining the<br />

area <strong>of</strong> occupancy. Accordingly, the whole terrain <strong>of</strong><br />

Middle Andamans was stratified into 4km 2 grids for<br />

this purpose. Within each grid, all the trees for locating<br />

the individuals <strong>of</strong> D. tenuicaule were observed. The<br />

localities <strong>of</strong> occurrence were recorded by Garmin<br />

Global Positioning System.<br />

Following Garcia-Gonzalez et al. (2011), we<br />

counted all the individuals <strong>of</strong> D. tenuicaule inhabited<br />

on phorophytes that were found from the base <strong>of</strong><br />

the trunk to the first primary branches; intersection<br />

between branches at various heights; and branches. We<br />

also classified the plants <strong>of</strong> the species by seedlings,<br />

© K. Prasad<br />

Image 1. A - habit; B - close up <strong>of</strong> flower; C - fruit.<br />

3412<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3410–3414


Status <strong>of</strong> Dendrobium tenuicaule<br />

earliest stage after the protocorm in which the young<br />

plant first acquires differentiated structures (2mm to<br />

2cm); juvenile, sexually immature but well developed<br />

plants (>2cm) and adults, sexually mature plants<br />

that have flowered at least once. We counted all the<br />

individuals <strong>of</strong> each life stage on each <strong>of</strong> the microsites<br />

<strong>of</strong> every phorophyte within the study sites.<br />

The species has been assessed for its conservation<br />

status based on 3.1 version <strong>of</strong> IUCN red list (IUCN,<br />

2001). The Extent <strong>of</strong> Occurrence (EOO) and Area <strong>of</strong><br />

Occupancy (AOO) are estimated.<br />

Results and Discussion<br />

Of the 100 grids laid in Rangat Forest Division,<br />

we located the D. tenuicaule only in three grids in<br />

Kousalyanagar Forest area <strong>of</strong> Bakunthala Range. We<br />

found only 56 clumps in the three grids comprising<br />

41 mature and 12 juvenile individuals and three<br />

seedlings. All these individuals were found on 41<br />

phorophytes (host trees) which were either Mangifera<br />

indica or Areca catechu. No other tree species was<br />

found hosting this orchid species. Of the 56 clumps,<br />

47 were found on Mangifera indica, which represents<br />

84% <strong>of</strong> the total population and nine clumps on A.<br />

catechu. It was observed that the species was found<br />

at an altitudinal range <strong>of</strong> 5–40 m. The maximum<br />

number <strong>of</strong> clumps (29) were found between 10–20 m<br />

covering about 52% <strong>of</strong> the total population. Further,<br />

this species was not found in the interior forests and<br />

appears to prefer open areas and forest edges. It was<br />

also observed that only one <strong>of</strong> the adult clumps was<br />

found in the fruiting stage.<br />

Timber harvesting and commercial plantations<br />

in Kousalyanagar forests are threatening the species<br />

existence. Further, the historical collection site <strong>of</strong><br />

the species by Bhargava (1977), 25km south-west <strong>of</strong><br />

Rangat in the present Bakultala range is now converted<br />

into a forest plantation and despite our repeated visits<br />

we could not locate the species at this point.<br />

Conservation status<br />

D. tenuicaule has been assessed as Endangered<br />

(Balakrishnan & Rao 1983; Nayar & Sastry 1990; Rao<br />

et al. 2003). Based on the field observations during<br />

the present study, the conservation status <strong>of</strong> the species<br />

has been evaluated following the latest IUCN Red List<br />

Criteria (Version 3.1; IUCN 2011). Of the five criteria<br />

(A–E) pertaining to threat categories the species<br />

B.R.P. Rao et al.<br />

qualifies for criterion B1 (Extent <strong>of</strong> Occurrence -<br />

EOO) and B2 (Area <strong>of</strong> Occupancy - AOO) (Fig. 1);<br />

criterion C and D.<br />

Criterion B: Dendrobium tenuicaule is restricted to<br />

a single location and has a highly restricted Extent <strong>of</strong><br />

Occurrence (EOO; B1) and Area <strong>of</strong> Occupancy (AOO;<br />

B2).<br />

Criterion B1: The EOO <strong>of</strong> Dendrobium tenuicaule<br />

is estimated to be 2.8km 2 . Continuing decline <strong>of</strong><br />

population is observed and inferred (subcriterion b)<br />

in terms <strong>of</strong> area, extent or quality <strong>of</strong> habitats (iii) and<br />

in the number <strong>of</strong> mature individuals (v). Hence the<br />

species falls under Critically Endangered category as<br />

its geographical range is less than 100km 2 and satisfies<br />

subcriterion b(iii and v).<br />

Criterion B2: The AOO is 1km 2 , and since this<br />

estimate is less than 10km 2 , the species qualifies for<br />

Critically Endangered category under subcriterion<br />

b(iii and v).<br />

Criterion C: Restricted population size and<br />

continuing decline. The total estimated population <strong>of</strong><br />

the species comprises <strong>of</strong> 41 mature individuals. The<br />

species qualifies for Critically Endangered category.<br />

Further, there is a continuous decline observed,<br />

projected, inferred in numbers <strong>of</strong> individuals<br />

(subcriterion 2) there are no subpopulations and as the<br />

whole population contains not more than 50 mature<br />

individuals it further qualifies for subcriterion a(i).<br />

Criterion D: Very small or restricted populations.<br />

Since the species population comprises only 41<br />

mature individuals it falls under Critically Endangered<br />

category.<br />

Based on field observations and overall assessment,<br />

Dendrobium tenuicaule is assessed as Critically<br />

Endangered [B1ab(iii,v)+2ab(iii,v); C2a(i); D].<br />

REFERENCES<br />

APG III (2009). An update <strong>of</strong> the Angiosperm Phylogeny<br />

Group classification for the orders and families <strong>of</strong> flowering<br />

plants: APG III. Botanical <strong>Journal</strong> <strong>of</strong> Linnaean Society<br />

161: 105–121.<br />

Balakrishnan, N.P. & M.K.V. Rao (1983). The Dwindling<br />

plant species <strong>of</strong> Andaman & Nicobar Islands, pp. 186–<br />

201. In: Jain, S.K. & R.R. Rao (eds.). An Assessment <strong>of</strong><br />

<strong>Threatened</strong> Plants <strong>of</strong> India. Botanical Survey <strong>of</strong> India,<br />

Howrah.<br />

García-González1, A., A. Damon, L.G.E. Olguín & J. Valle-<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3410–3414<br />

3413


Status <strong>of</strong> Dendrobium tenuicaule<br />

Mora (2011). Population structure <strong>of</strong> Oncidium poikilosta<br />

lix (Orchidaceae), in c<strong>of</strong>fee plantations in Soconusco,<br />

Chiapas , México. Lankesteriana 11(1): 23–32.<br />

Hooker, J.D. (1890). Flora <strong>of</strong> British India–Vol. 6. L. Reeve,<br />

London, 184pp.<br />

IUCN/SSC Orchid Specialist Group (1996). Orchids -<br />

Status Survey and Conservation Action Plan. IUCN,Gland<br />

Switzerland and Cambridge, UK, 91pp.<br />

IUCN (2001). IUCN Red List Categories and Criteria: Version<br />

3.1. IUCN Species Survival Commission. IUCN, Gland,<br />

Switzerland and Cambridge, U.K.<br />

IUCN Standards and Petitions Subcommittee (2011).<br />

Guidelines for Using the IUCN Red List Categories and<br />

Criteria. Version 9.0. Prepared by the Standards and<br />

Petitions Subcommittee.<br />

King, G. (1895). In: Annals <strong>of</strong> Royal Botanical Gardens<br />

Calcutta 5: 9, t. 13.<br />

Kumar, C.S. & K.S. Manilal (1994). A Catalogue <strong>of</strong> Indian<br />

Orchids. Bishen Singh Mahendra Pal Singh, Dehra Dun,<br />

India, 162pp.<br />

Misra, S. (2007). Orchids <strong>of</strong> India, A Glimpse. Bishen Singh<br />

Mahendra Pal Singh, Dehradun, 402pp.<br />

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B.<br />

da Fonseca & J. Kent (2000). Biodiversity hotspots for<br />

conservation priorities. Nature 403: 853–858.<br />

Nayar, N.P. & A.R.K. Sastry (1990). Red Data Book <strong>of</strong> Indian<br />

Plants—Vol. 3. Botanical Survey <strong>of</strong> India, Calcutta, pp.<br />

195–196.<br />

B.R.P. Rao et al.<br />

Pandey, R.P. & P.G. Diwakar (2008). An integrated checklist<br />

flora <strong>of</strong> Andaman and Nicobar Islands, India. <strong>Journal</strong> <strong>of</strong><br />

Economic Taxonomic Botany 32: 2.<br />

Rao, C.K., B.L. Geetha & G. Suresh (2003). Red List <strong>of</strong><br />

<strong>Threatened</strong> Vascular Plant Species in India. Botanical<br />

Survey <strong>of</strong> India, Calcutta, 144pp.<br />

Rao, B.R.P., M.V.S. Babu & J. Donaldson (2010). A<br />

Reassessment <strong>of</strong> the conservation status <strong>of</strong> Cycas beddomei<br />

Dyer (Cycadaceae), an endemic <strong>of</strong> the Tirupati-Kadapa<br />

Hills, Andhra Pradesh, India, and comments on its CITES<br />

Status. Encephalartos 102: 19–24.<br />

Rao, B.R.P., M.V.S. Babu, A.M. Reddy, S. Sunitha,<br />

A. Narayanaswamy, G. Lakshminarayana & M.<br />

Ahmedullah (2011). Conservation status <strong>of</strong> Hildegardia<br />

populifolia (Roxb.) Schott & Endl. (Malvaceae:<br />

Sterculioideae: Sterculieae), an endemic <strong>of</strong> southern<br />

peninsular India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 3(8): 2018–<br />

2022.<br />

UNEP & WCMC (2003). Checklist <strong>of</strong> CITES Species. UNEP<br />

World Conservation Monitoring Centre, Cambridge,<br />

339pp.<br />

van Dunne, J.F.H. (2002). Effects <strong>of</strong> the spatial distribution<br />

<strong>of</strong> trees, conspecific epiphytes and geomorphology on the<br />

distribution <strong>of</strong> epiphytic bromeliads in a secondary montane<br />

forest (Cordillera Central, Colombia). <strong>Journal</strong> <strong>of</strong> Tropical<br />

Ecology 18: 193–213.<br />

3414<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3410–3414


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3415–3425<br />

Endemic orchids <strong>of</strong> peninsular India: a review<br />

Jeewan Singh Jalal 1 & J. Jayanthi 2<br />

1,2<br />

Botanical Survey <strong>of</strong> India, Western Regional Centre, 7, Koregaon Road, Pune, Maharashtra 411001, India<br />

Email: 1 jeewansinghjalal@rediffmail.com (corresponding author), 2 jayanthi.bsi@gmail.com<br />

Orchidaceae is one <strong>of</strong> the most ecologically and<br />

morphologically diverse families <strong>of</strong> flowering plants.<br />

It is the second largest family <strong>of</strong> flowering plants in<br />

the world, comprising <strong>of</strong> about 779 genera and 22,500<br />

species (Mabberley 2008). They have diverse habits<br />

with variously modified vegetative and floral structures.<br />

Based on their varying habits, orchids are classified as<br />

holomycotrophic or saprophytic (growing on dead and<br />

decaying matter), terrestrials (growing on ground) and<br />

epiphytic (growing on trees or shrubs). They are very<br />

sensitive to habitat degradation and fragmentation.<br />

In India, the orchid diversity is represented by 1,331<br />

species belonging to 186 genera (Misra 2007).<br />

The Indian subcontinent has diverse climatic<br />

regimes, forest types and habitat conditions that<br />

provides a favourable environment for accommodating<br />

diverse life forms and species. Being separated by<br />

high mountain ranges <strong>of</strong> the Himalaya in the north and<br />

in the south by Arabian Sea, Bay <strong>of</strong> Bengal and Indian<br />

Ocean, the isolation <strong>of</strong> Indian flora to a large extent<br />

helps in the evolution <strong>of</strong> endemic taxa (Nayar 1996).<br />

Geologically the drifting <strong>of</strong> the Indian subcontinent<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Pankaj Kumar<br />

Manuscript details:<br />

Ms # o3091<br />

Received 04 February <strong>2012</strong><br />

Final received 19 October <strong>2012</strong><br />

Finally accepted 28 October <strong>2012</strong><br />

Citation: Jalal, J.S. & J. Jayanthi (<strong>2012</strong>). Endemic orchids <strong>of</strong> peninsular<br />

India: a review. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3415–3425.<br />

Copyright: © Jeewan Singh Jalal & J. Jayanthi <strong>2012</strong>. Creative Commons<br />

Attribution 3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> this article<br />

in any medium for non-pr<strong>of</strong>it purposes, reproduction and distribution by<br />

providing adequate credit to the authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The authors are thankful to Dr. Paramjith Singh,<br />

Director, Botanical Survey <strong>of</strong> India for providing facilities and support. The<br />

authors are also thankful to Dr. D.K. Singh, Additional Director, Botanical<br />

Survey <strong>of</strong> India for encouragement.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Abstract: The present analysis <strong>of</strong> endemic orchids shows a total<br />

account <strong>of</strong> 130 species belonging to 38 genera in peninsular India.<br />

Of these, 43 are terrestrial, 85 epiphytic and two holomycotrophic<br />

(saprophytic). The Western Ghats comprises <strong>of</strong> 123 endemic<br />

orchid species, Deccan Plateau has 29 endemic orchid species<br />

and Eastern Ghats has 22 endemic orchid species. However, in<br />

the present analysis the number <strong>of</strong> endemic species is reduced<br />

from the earlier reports because <strong>of</strong> the rapid development in the<br />

taxonomic explorations in the neighboring countries. As a result,<br />

many species were found to show extended distribution.<br />

Key words: Deccan Plateau, endemic, Eastern Ghats, orchids,<br />

peninsular India, Western Ghats.<br />

from the Gondwanaland through various latitudes<br />

lead to immigration and extinction <strong>of</strong> species which<br />

are engraved in the present day floristic composition<br />

(Axelrod 1971). The endemism in the flora <strong>of</strong> a<br />

country or geographical region provides an important<br />

insight into the biogeography <strong>of</strong> that region and also<br />

to the centers <strong>of</strong> diversity and adaptive evolution <strong>of</strong><br />

the floristic components <strong>of</strong> that region (Nayar 1996).<br />

In India, the peninsular region has a high degree <strong>of</strong><br />

endemism making it the second richest endemic<br />

centre after the Himalaya. Nayar (1977) surmised,<br />

the history <strong>of</strong> flora <strong>of</strong> peninsular India is one <strong>of</strong> the<br />

floristic impoverishments due to flow <strong>of</strong> Deccan<br />

lavas during cretaceous-eocene time and spreading<br />

aridity in Miocene-quaternary period, causing<br />

depletion <strong>of</strong> its characteristic flora leaving few relict<br />

taxa. The peninsular region is a part <strong>of</strong> Indian plate<br />

<strong>of</strong> Gondwanaland and most <strong>of</strong> the endemic plants <strong>of</strong><br />

this region are palaeoendemics. A large concentration<br />

<strong>of</strong> endemic species is found in the tropical moist<br />

deciduous and tropical semievergreen patches <strong>of</strong><br />

Western Ghats and to a much lesser degree in Eastern<br />

Ghats (Nayar 1996).<br />

Materials and Methods<br />

Peninsular India comprises <strong>of</strong> seven states viz.,<br />

Andhra Pradesh, Goa, Karnataka, Kerala, Maharashtra,<br />

Odisha and Tamil Nadu and one union territory namely<br />

Pondicherry. It is bound by Vindhyan Mountains in<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425 3415


Peninsular India orchids<br />

the north, Arabian Sea in the west, Indian Ocean in the<br />

south and Bay <strong>of</strong> Bengal in the east. The geography <strong>of</strong><br />

the region can be divided into three zones namely the<br />

Deccan Plateau, Eastern Ghats and the Western Ghats<br />

(Image 1). The Deccan Plateau is the largest plateau<br />

in India, making up the majority <strong>of</strong> the southern part <strong>of</strong><br />

the country. Eastern Ghats forms a broken chain <strong>of</strong> hill<br />

ranges extending through the states <strong>of</strong> Odisha, Andhra<br />

Pradesh and Tamil Nadu. It runs north-east to southwest<br />

direction in peninsular India. Western Ghats starts<br />

near the border <strong>of</strong> Gujarat and Maharashtra, south<br />

<strong>of</strong> the Tapti River and runs approximately 1600km<br />

through the states <strong>of</strong> Maharashtra, Goa, Karnataka,<br />

Tamil Nadu and Kerala ending at Kanyakumari. It is<br />

also one <strong>of</strong> the 34 Biodiversity Hotspots <strong>of</strong> the world<br />

(Myers et al. 2000). The vegetation type <strong>of</strong> peninsular<br />

India varies from tropical evergreen forest, tropical<br />

semievergreen forests, sholas, moist deciduous forests,<br />

dry deciduous forests, scrub jungles and dry savannah<br />

forests.<br />

For the present analysis information on the endemic<br />

J.S. Jalal & J. Jayanthi<br />

orchids <strong>of</strong> peninsular region was collected from<br />

literature such as Hooker (1888–1890), Blatter (1928),<br />

Fischer (1928), Cooke (1958), Santapau & Kapadia<br />

(1966), Saldanha & Nicolson (1976), Pradhan (1976),<br />

Bose & Bhattacharjee (1980), Yoganarasimhan et al.<br />

(1981), Nayar et al. (1984), Rathakrishnan & Chitra<br />

(1984), Rao (1986, 1998), Joseph (1987), Ahmedullah<br />

& Nayar (1987), Chandrabose & Nair (1988), Manilal<br />

(1988), Henry et al. (1989), Ansari & Balakrishnan<br />

(1990), Keshavamurthy & Yoganarasimhan (1990),<br />

Kumar & Manilal (1994), Lakshminarasimhan<br />

(1996), Nayar (1996), Pullaiah (1997), Karthikeyan<br />

(2000), Gopalan & Henry (2000), Mishra & Singh<br />

(2001), Singh et al. (2001), Kumar et al. (2001),<br />

Yadav & Sardesai (2002), Rao & Kumari (2003),<br />

Manilal & Kumar (2004), Sardesai & Yadav (2004),<br />

Joshi & Janarthanam (2004), Gaikwad & Yadav<br />

(2004), Misra (2007), Misra et al. (2008), Nayar et<br />

al. (2008), Bachulkar (2010) and Narayanan et al.<br />

(2010). The online databases, namely, Govaerts et<br />

al. (<strong>2012</strong>) http://apps. Kew.org/wcsp, Tropicos (<strong>2012</strong>)<br />

Image 1. Map <strong>of</strong> peninsular India<br />

3416<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425


Peninsular India orchids<br />

www.tropicos.org, IPNI (<strong>2012</strong>) www.ipni.org, eFloras<br />

(<strong>2012</strong>) www.efloras.org were also consulted for recent<br />

updates on the plant names and distribution. Species<br />

earlier recorded as endemic but now reported from<br />

the other parts <strong>of</strong> the world, were excluded from the<br />

current list and their nomenclatural changes were<br />

also updated. The endemic orchid species are listed<br />

based on phytogeographical regions and state-wise<br />

distribution is also provided. The present work is<br />

our modest attempt to give an up-to date account <strong>of</strong><br />

the endemic orchids <strong>of</strong> the peninsular region and to<br />

include nomenclature changes, new distributional<br />

records and new species records.<br />

Results<br />

Ahmedullah & Nayar (1987) brought out the first<br />

authentic work on the endemic plants <strong>of</strong> peninsular<br />

India and estimated 123 species and 33 genera <strong>of</strong><br />

endemic orchids from this region. While Nayar<br />

(1996) estimated 136 species, later on Kumar &<br />

Manilal (1994) recorded 142 species belonging to 38<br />

genera. Further, Rao (1998) estimated 126 endemic<br />

species. Singh et al. (2001) recorded 135 species and<br />

Misra (2007) recorded 160 species. So far the total<br />

endemic orchids in India are 404 (2.3%) (Misra 2007)<br />

out <strong>of</strong> 17,500 total flowering plants, peninsular India<br />

represents 39.6% <strong>of</strong> endemic orchids out <strong>of</strong> 1,331 total<br />

number <strong>of</strong> orchids.<br />

The present analysis resulted with a total <strong>of</strong> 130<br />

species belonging to 38 genera endemic to peninsular<br />

India (Table 1). Of these, 43 are terrestrial, 85 are<br />

epiphytic and two are holomycotrophic. The analysis<br />

shows that the genus Habenaria (25 spp.), Oberonia<br />

Number <strong>of</strong> species<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

J.S. Jalal & J. Jayanthi<br />

Species<br />

Genus<br />

Strict endemic<br />

Western Ghats Deccan Plateu Eastern Ghats<br />

Figure 1. Species richness <strong>of</strong> endemic orchids in different<br />

regions <strong>of</strong> peninsular India<br />

(17 spp.), Bulbophyllum (15 spp.), Dendrobium (11<br />

spp.) and Eria (6 spp.), are among the species rich<br />

genera representing nearly 60% <strong>of</strong> total endemic<br />

orchids <strong>of</strong> peninsular India. The Western Ghats region<br />

has maximum 123 endemic orchid species followed<br />

by Deccan Plateau and then Eastern Ghats (Fig. 1).<br />

Of the total endemic orchid species <strong>of</strong> the peninsular<br />

region, 95 (73%) are strict endemics to Western Ghats<br />

and five species (4%) are restricted to Eastern Ghats.<br />

However, there are no strict endemic species in the<br />

Deccan Plateau (Fig. 1). A state wise analysis <strong>of</strong><br />

distribution <strong>of</strong> endemic orchids shows that Kerala has<br />

a maximum number <strong>of</strong> endemic species followed by<br />

Tamil Nadu, Karnataka and Maharashtra. The states<br />

<strong>of</strong> Gujarat, Andhra Pradesh and Odisha show very poor<br />

representation <strong>of</strong> the endemic species (Fig. 2). A total<br />

<strong>of</strong> 27 orchid species earlier considered as endemic to<br />

the peninsular region are excluded from the list owing<br />

to their extended distribution in the neighbouring<br />

countries (Table 2).<br />

100<br />

Species<br />

Number <strong>of</strong> species<br />

Genus<br />

80<br />

Strict endemic<br />

60<br />

40<br />

20<br />

0<br />

GU GO MH KA KE TN AP OD<br />

Figure 3. Species richness <strong>of</strong> endemic orchids across different states <strong>of</strong> peninsular India<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425<br />

GU - Gujarat<br />

GO - Goa<br />

MH - Maharashtra<br />

KA - Karnataka<br />

KE - Kerala<br />

TN - Tamil Nadu<br />

AP - Andhra Pradeh<br />

OD - Odisha<br />

3417


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Table 1. List <strong>of</strong> endemic orchids <strong>of</strong> peninsular India<br />

Sno Species Habit<br />

1<br />

Aenhenrya rotundifolia (Blatt.)<br />

C.S. Kumar & F.N. Rasm.<br />

Phytogeographical<br />

regions <strong>of</strong> peninsular India<br />

State wise distribution<br />

WG Deccan EG GU GO MH KA KE TN AP OD<br />

T + + +<br />

2 Aerides crispa Lindl. E + + + + + + + +<br />

3 Aerides maculosa Lindl. E + + + + + + + + + + +<br />

4<br />

5<br />

Brachycorythis iantha (Wight)<br />

Summerh.<br />

Brachycorythis splendida<br />

Summerh.<br />

T + + + +<br />

T + + +<br />

6 Brachycorythis wightii Summerh. T + +<br />

7<br />

Bulbophyllum acutiflorum A. Rich.<br />

= Bulbophyllum albidum (Wight)<br />

Hook. f.<br />

E + + + +<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

Bulbophyllum aureum (Hook. f.)<br />

J.J. Sm.<br />

Bulbophyllum elegantulum<br />

(Rolfe) J.J. Sm.<br />

Bulbophyllum fimbriatum (Lindl.)<br />

Rchb.f.<br />

Bulbophyllum fuscopurpureum<br />

Wight<br />

Bulbophyllum kaitiense Rchb. f.<br />

= Cirrhopetalum nilgherrense<br />

Wight<br />

Bulbophyllum keralense M.<br />

Kumar & Sequiera<br />

Bulbophyllum mysorense (Rolfe)<br />

J.J. Sm.<br />

Bulbophyllum nodosum (Rolfe)<br />

J.J. Sm.<br />

= Rhytionanthos nodosum (Rolfe)<br />

Garay<br />

E + + +<br />

E + + + +<br />

E + + + + + +<br />

E + + + + +<br />

E + + + + + + +<br />

E + +<br />

E + + + +<br />

E + +<br />

16 Bulbophyllum orezii C.S. Kumar E + +<br />

17<br />

18<br />

19<br />

20<br />

Bulbophyllum proudlockii (King &<br />

Pantl.) J.J. Sm.<br />

Bulbophyllum rheedei Manilal<br />

& C.S. Kumar = Rhytionanthos<br />

rheedei (Manilal & C.S. Kumar)<br />

Garay<br />

Bulbophyllum rosemarianum<br />

C.S.Kumar, P.C.S.Kumar &<br />

Saleem<br />

Bulbophyllum silentvalliensis M.P.<br />

Sharma & S.K. Srivast.<br />

E + + + +<br />

E + +<br />

E + +<br />

E + +<br />

21 Bulbophyllum tremulum Wight E + + + +<br />

22<br />

23<br />

24<br />

25<br />

Cheirostylis seidenfadeniana<br />

C.S. Kumar & F.N. Rasm.<br />

Chiloschista glandulosa Blatt. &<br />

McCann<br />

Coelogyne mossiae Rolfe<br />

= Coelogyne glandulosa var.<br />

bournei S. Das & S.K. Jain<br />

= Coelogyne glandulosa var.<br />

sathyanarayanae S. Das & S.K.<br />

Jain<br />

Coelogyne nervosa A. Rich.<br />

= Coelogyne glandulosa Lindl.<br />

E + +<br />

E + + +<br />

E + + +<br />

E + + + +<br />

3418<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Sno Species Habit<br />

26<br />

27<br />

28<br />

29<br />

Conchidium filiforme (Wight)<br />

Rauschert<br />

= Eria dalzellii (Hook. ex Dalzell)<br />

Lindl.<br />

Conchidium microchilos (Dalzell)<br />

Rauschert<br />

= Eria microchilos (Dalzell) Lindl.<br />

= Eria tiagii Manilal, C.S. Kumar<br />

& J.J. Wood<br />

Conchidium nanum (A. Rich.)<br />

Brieger<br />

= Eria nana A. Rich.<br />

= Eria muscicola var. brevilinguis<br />

J. Joseph & V. Chandras.<br />

Dendrobium anamalayanum<br />

Chandrab., V. Chandras & N.C.<br />

Nair<br />

Phytogeographical<br />

regions <strong>of</strong> peninsular India<br />

State wise distribution<br />

WG Deccan EG GU GO MH KA KE TN AP OD<br />

E + + + + +<br />

E + + + + + +<br />

E + + + +<br />

E + + +<br />

30 Dendrobium aqueum Lindl. E + + + + + + + +<br />

31 Dendrobium barbatulum Lindl. E + + + + + + +<br />

32<br />

Dendrobium diodon subsp.<br />

kodayarensis Gopalan & A.N.<br />

Henry<br />

E + +<br />

33 Dendrobium heyneanum Lindl. E + + + + +<br />

34 Dendrobium nanum Hook. f. E + + + + + +<br />

35 Dendrobium lawianum Lindl. E + + + +<br />

+<br />

36 Dendrobium microbulbon A. Rich. E + + + + + + +<br />

37<br />

Dendrobium nodosum Dalzell<br />

= Flickingeria nodosa (Dalzell)<br />

Seidenf.<br />

E + + + + + +<br />

38 Dendrobium ovatum (L.) Kraenzl. E + + + + + + + + + +<br />

39<br />

40<br />

Dendrobium wightii A.D. Hawkes<br />

& A.H. Heller<br />

Didymoplexis seidenfadenii<br />

C.S. Kumar & Ormerod<br />

E + + + +<br />

H + +<br />

41 Diplocentrum congestum Wight E + + + +<br />

42<br />

Disperis monophylla Blatt. ex<br />

C.E.C. Fisch.<br />

T + +<br />

43 Eria albiflora Rolfe E + + + +<br />

44<br />

45<br />

Eria exilis Hook. f.<br />

= Porpax chandrasekharanii<br />

Bhargavan & C.N. Mohanan<br />

Eria meghasaniensis (S. Misra)<br />

S. Misra<br />

E + + + + + +<br />

E + +<br />

46 Eria mysorensis Lindl. E + + + + +<br />

47 Eria pauciflora Wight E + + +<br />

48 Eria pseudoclavicaulis Blatt. E + + +<br />

49 Eulophia emilianae Saldanha T + +<br />

+<br />

50 Eulophia ochreata Lindl. T + + + + + + +<br />

51 Eulophia pratensis Lindl. T + + +<br />

52<br />

53<br />

54<br />

Gastrochilus flabelliformis (Blatt.<br />

& McCann) C.J. Saldanha<br />

Gastrodia silentvalleyana C.S.<br />

Kumar, P.C.S. Kumar, Sibi & S.<br />

Anil Kumar<br />

Habenaria barnesii Summerh. ex<br />

C.E.C. Fisch.<br />

E + + + +<br />

H + +<br />

T + + +<br />

55 Habenaria caranjensis Dalzell T + +<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425<br />

3419


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Sno Species Habit<br />

Phytogeographical<br />

regions <strong>of</strong> peninsular India<br />

State wise distribution<br />

WG Deccan EG GU GO MH KA KE TN AP OD<br />

56 Habenaria cephalotes Lindl. T + + + + +<br />

57 Habenaria crassifolia A. Rich. T + + + + + + + +<br />

58 Habenaria elliptica Wight T + + + +<br />

59 Habenaria elwesii Hook. f. T + + + + +<br />

60<br />

61<br />

62<br />

Habenaria flabelliformis<br />

Summerh. ex C.E.C. Fisch.<br />

Habenaria foliosa A. Rich.<br />

= Habenaria digitata var. gibsonii<br />

(Hook.f.) C.E.C. Fisch.<br />

= Habenaria foliosa var. foetida<br />

(Blatt. & McCann) Bennet<br />

= Habenaria foliosa var. gibsonii<br />

(Hook. f.) Bennet<br />

= Habenaria gibsonii Hook. f.<br />

= Habenaria gibsonii var. foetida<br />

Blatt. & McCann<br />

Habenaria grandifloriformis Blatt.<br />

& McCann<br />

T + +<br />

T + + + + + +<br />

T + + + + + + + + +<br />

63 Habenaria heyneana Lindl. T + + + + + + +<br />

64<br />

65<br />

Habenaria hollandiana Santapau<br />

= Habenaria indica C.S. Kumar<br />

& Manilal<br />

Habenaria longicornu Lindl.<br />

= Habenaria decipiens Wight<br />

T + + + + + + +<br />

T + + + + +<br />

66 Habenaria multicaudata Sedgw. T + + + + + +<br />

67 Habenaria ovalifolia Wight T + + + + +<br />

68<br />

Habenaria pallideviridis Seidenf.<br />

ex K.M. Matthew<br />

T + +<br />

69 Habenaria panigrahiana S. Misra T + +<br />

70<br />

71<br />

72<br />

Habenaria panigrahiana var.<br />

parviloba S. Misra<br />

Habenaria panchganiensis<br />

Santapau & Kapadia<br />

Habenaria periyarensis Sasidh.,<br />

K.P. Rajesh & Augustine<br />

T + +<br />

T + +<br />

T + +<br />

73 Habenaria perrottetiana A. Rich. T + + + +<br />

74 Habenaria polyodon Hook. f. T + +<br />

75<br />

Habenaria ramayyana Ram.<br />

Chary & J.J. Wood<br />

T + +<br />

76 Habenaria rariflora A. Rich. T + + + + + + + +<br />

77 Habenaria richardiana Wight T + + +<br />

78 Habenaria suaveolens Dalzell T + + + +<br />

79<br />

Ipsea malabarica (Rchb. f.)<br />

Hook. f.<br />

T + + +<br />

80 Liparis beddomei Ridl. E + +<br />

81 Liparis biloba Wight E + + +<br />

82 Liparis platyphylla Ridl. E + + +<br />

83<br />

84<br />

Liparis vestita Rchb. f.<br />

= Liparis espeevijii S. Misra<br />

Liparis walakkadensis M. Kumar<br />

& Sequiera<br />

E + +<br />

E + +<br />

85 Luisia abrahamii Vatsala E + +<br />

86<br />

Luisia macrantha Blatt. &<br />

McCann<br />

E + + +<br />

3420<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Sno Species Habit<br />

87<br />

Malaxis crenulata (Ridl.) Kuntze<br />

= Seidenfia crenulata (Ridl.)<br />

Szlach.<br />

Phytogeographical<br />

regions <strong>of</strong> peninsular India<br />

State wise distribution<br />

WG Deccan EG GU GO MH KA KE TN AP OD<br />

T + +<br />

88<br />

Malaxis intermedia (A. Rich.)<br />

Seidenf.<br />

= Seidenfia intermedia (A. Rich.)<br />

T + + + +<br />

Szlach.<br />

89 Nervilia hispida Blatt. & McCann. T + +<br />

90<br />

Oberonia agastyamalayana C.S.<br />

Kumar<br />

E + +<br />

91 Oberonia anamalayana Joseph E + +<br />

92 Oberonia balakrishnanii R. Ansari E + +<br />

93 Oberonia bellii Blatt. & McCann E + +<br />

94<br />

Oberonia brachyphylla Blatt. &<br />

McCann<br />

E + + +<br />

95 Oberonia brunoniana Wight E + + + + + + + + +<br />

96<br />

Oberonia chandrasekharanii V.J.<br />

Nair, V.S. Ramach. & R. Ansari<br />

E + + +<br />

97 Oberonia josephi C.J. Saldanha E + +<br />

98<br />

99<br />

Oberonia nayarii R. Ansari & R.<br />

Balakrishnan<br />

Oberonia proudlockii King &<br />

Pantl.<br />

E + + + +<br />

E + + + + + +<br />

100 Oberonia platycaulon Wight E + + + +<br />

101 Oberonia santapaui Kapadia E + + + + + + +<br />

102<br />

103<br />

104<br />

Oberonia sebastiana B.V. Shetty<br />

& Vivek.<br />

Oberonia seidenfadeniana J.<br />

Joseph & Vajr.<br />

Oberonia swaminathanii<br />

Ratheesh, Manudev & Sujanapal<br />

E + + +<br />

E + + +<br />

E + +<br />

105 Oberonia verticillata Wight E + + + + + +<br />

106<br />

Oberonia wynadensis Sivad. &<br />

R.T. Balakrishnan<br />

E + +<br />

107 Odisha cleistantha S.Misra T + + +<br />

108<br />

Paphiopedilum druryi (Bedd.)<br />

Stein<br />

T + + +<br />

109 Peristylus brachyphyllus A. Rich T + + +<br />

110 Peristylus lancifolius A. Rich. T + + +<br />

111<br />

112<br />

Peristylus stocksii (Hook. f.)<br />

Kraenzl.<br />

Pinalia polystachya (A. Rich.)<br />

Kuntze<br />

T + + + + +<br />

E + + +<br />

113 Porpax jerdoniana (Wight) Rolfe E + + + + + +<br />

114 Pteroceras indicum Punekar E + +<br />

115<br />

116<br />

117<br />

118<br />

119<br />

Pteroceras monsooniae Sasidh.<br />

& Sujanapal<br />

Robiquetia josephiana Manilal &<br />

C.S. Kumar<br />

Saccolabium congestum (Lindl.)<br />

Hook. f.<br />

Schoenorchis jerdoniana (Wight)<br />

Garay<br />

Schoenorchis latifolia (C.E.C.<br />

Fisch.) Saldanha<br />

E + +<br />

E + + +<br />

E + +<br />

E + + + + + + +<br />

E +<br />

+<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425<br />

3421


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Sno Species Habit<br />

120<br />

121<br />

122<br />

Schoenorchis manilaliana M.<br />

Kumar & Sequiera<br />

Seidenfadeniella rosea (Wight)<br />

C.S. Kumar<br />

Smithsonia maculata (Dalzell)<br />

Saldanha<br />

Phytogeographical<br />

regions <strong>of</strong> peninsular India<br />

State wise distribution<br />

WG Deccan EG GU GO MH KA KE TN AP OD<br />

E + +<br />

E + + +<br />

E + + + + +<br />

123 Smithsonia straminea Saldanha E + + +<br />

124<br />

125<br />

Smithsonia viridiflora (Dalzell)<br />

Saldanha<br />

Taeniophyllum scaberulum<br />

Hook. f.<br />

E + + + +<br />

E + +<br />

126 Trias bonaccordensis C.S. Kumar E + + +<br />

127 Trias stocksii Benth. ex Hook. f. E + + + + +<br />

128<br />

129<br />

Xenikophyton seidenfadenianum<br />

M. Kumar<br />

Xenikophyton smeeanum<br />

(Rchb.f.) Garay<br />

E + +<br />

E + + + +<br />

130 Zeuxine lindleyana A.N. Rao T + +<br />

Total 123 29 22 7 14 36 71 95 80 11 12<br />

T - Terrestrial; E - Epiphytic; H - Holomycotrophic; WG - Western Ghats; EG - Eastern Ghats; Gu - Gujarat; Go - Goa; MH - Maharashtra; KA-<br />

Karnataka; KE - Kerala; TN - Tamil Nadu; AP- Andhra Pradesh; OD - Odisha<br />

Discussion<br />

Endemic taxa occur in a restricted area usually<br />

isolated by geographical or temporal barriers<br />

(Ahmedullah & Nayar 1987). The endemic taxa<br />

occurring in such isolated/restricted areas are possible<br />

survivors <strong>of</strong> their ancient stock that occurred in<br />

continental areas which were subjected to cataclysmic<br />

geological and climatic changes (Nayar 1996). The<br />

major concentrations <strong>of</strong> endemic orchid species are<br />

found in the Western Ghats (Subramanayam & Nayar<br />

1974). Agasthyamalai Hills, Anamalai-High Ranges,<br />

Nilgiris-Silent Valley-Waynad-Kodagu region,<br />

Shimoga-Kanara, Mahabaleswar-Khandala and<br />

Konkan-Raigad are some <strong>of</strong> the important centers <strong>of</strong><br />

endemism in the Western Ghats. Ninety five endemic<br />

orchid species are particularly restricted to these areas.<br />

Eastern Ghats have geological antiquity with isolated<br />

mountain ranges. The Eastern Ghats have some<br />

“ecological islands” that harbor endemic orchids. These<br />

are Ganjam-Koraput range in Odisha, Visakhapatnam<br />

Hills, Nallamalai-Cuddappah range and Tirupati<br />

Hills <strong>of</strong> Andhra Pradesh. Though Eastern Ghats<br />

possess a few rich forest patches, it has been poorly<br />

explored floristically as compared to Western Ghats.<br />

Eria meghasaniensis (S. Misra) S. Misra, Habenaria<br />

panigrahiana S. Misra, Habenaria panigrahiana var.<br />

parviloba S. Misra, Odisha cleistantha S. Misra and<br />

Zeuxine lindleyana A.N. Rao are strictly endemic to<br />

Odisha State. Aerides maculosa Lindl., Bulbophyllum<br />

kaitiense (Wight) Rchb.f., Dendrobium aqueum Lindl.,<br />

Dendrobium ovatum (L.) Kraenzl., Eulophia ochreata<br />

Lindl., Habenaria crassifolia A. Rich., Habenaria<br />

foliosa A. Rich., Habenaria grandifloriformis Blatt.<br />

& McCann, Habenaria hollandiana Santapau,<br />

Habenaria rariflora A. Rich., Oberonia brunoniana<br />

Wight, Oberonia proudlockii King & Pantl., Oberonia<br />

santapaui Kapadia, Oberonia verticillata Wight and<br />

Schoenorchis jerdoniana (Wight) Garay have very<br />

wide distribution in the peninsular region.<br />

The endemic orchids <strong>of</strong> the peninsular region are<br />

facing various kinds <strong>of</strong> localized threats like livestock<br />

grazing and forest fires as well as landscape-level threats<br />

such as mining, construction <strong>of</strong> roads, large as well as<br />

micro-hydal power projects, wind farms, large-scale<br />

agricultural expansion and creation <strong>of</strong> monoculture<br />

plantations. To cite an example Paphiopedilum druryi<br />

(Bedd.) Stein. which was once found in plenty in<br />

Agastyamalai Hills in southern India is now difficult<br />

to locate.<br />

3422<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425


Peninsular India orchids<br />

J.S. Jalal & J. Jayanthi<br />

Table. 2. Species earlier considered endemic but distributed in other regions<br />

Sno Plant name Distribution References<br />

1 Anoectochilus elatus Lindl. Sri Lanka Fernando & Ormerod 2008<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Bulbophyllum xylophyllum E.C. Parish & Rchb. f.<br />

= Bulbophyllum agastyamalayanum Gopalan &<br />

A.N. Henry<br />

Bulbophyllum sterile (Lam.) Suresh<br />

= Bulbophyllum nilgherrense Wight<br />

Chrysoglossum ornatum Blume<br />

= Chrysoglossum hallbergii Blatt.<br />

Bulbophyllum fischeri Seidenf.<br />

= Cirrhopetalum gamblei Hook. f.<br />

Bulbophyllum sarcophyllum (King & Pantl.)<br />

J.J. Sm.<br />

= Cirrhopetalum panigrahianum (S.Misra)<br />

S. Misra<br />

China, Myanmar, Thailand and Vietnam Rao 1998; Govaerts et al. <strong>2012</strong><br />

Nepal, Bangladesh, Myanmar Lucksom 2007; Govaerts et al. <strong>2012</strong><br />

Nepal, Cambodia, Thailand, Vietnam,<br />

Sumatra, Java<br />

Sri Lanka, Indo-China<br />

Lucksom 2007; Raskoti 2009; Govaerts<br />

et al. <strong>2012</strong><br />

Fernando & Ormerod 2008; Govaerts<br />

et al. <strong>2012</strong><br />

Nepal and Myanmar Lucksom 2007; Govaerts et al. <strong>2012</strong><br />

7 Dendrobium herbaceum Lindl. Bangladesh Govaerts et al. <strong>2012</strong><br />

8 Dendrobium jerdonianum Wight Sri Lanka Govaerts et al. <strong>2012</strong><br />

9 Dendrobium panduratum Lindl. Sri Lanka Govaerts et al. <strong>2012</strong><br />

10<br />

Dendrobium salaccense (Blume) Lindl.<br />

= Dendrobium cathcartii Hook. f.<br />

Sri Lanka, Laos, Myanmar, Thailand,<br />

Vietnam<br />

Fernando & Ormerod 2008; Wu & Hong<br />

2009; Govaerts et al. <strong>2012</strong><br />

11 Disperis neilgherrensis Wight Sri Lanka, Thailand, Java Kurzweil 2005; Govaerts et al. <strong>2012</strong><br />

12 Eria reticosa Wight Sri Lanka, E. Himalaya Govaerts et al. <strong>2012</strong><br />

13<br />

Eulophia flava (Lindl.) Hook. f.<br />

= Eulophia cullenii (Wight) Blume<br />

Nepal, Laos, Thailand, Vietnam Wu & Hong 2009; Govaerts et al. <strong>2012</strong><br />

14 Habenaria roxburghii Nicolson Sri Lanka Fernando & Ormerod 2008<br />

15<br />

Habenaria digitata Lindl.<br />

= Habenaria travancorica Hook. f.<br />

Uttarakhand, Assam, Nepal,<br />

Bangladesh, Laos, Myanmar<br />

Khanam et al. 2001; Govaerts et al.<br />

<strong>2012</strong><br />

16 Habenaria longicorniculata Graham Sri Lanka Govaerts et al. <strong>2012</strong><br />

17<br />

18<br />

19<br />

20<br />

21<br />

Hetaeria oblongifolia Blume<br />

= Hetaeria ovalifolia (Wight) Hook. f.<br />

Luisia tenuifolia Blume<br />

= Luisia evangelinae Blatt. & McCann<br />

Nervilia concolor (Blume) Schltr.<br />

= Nervilia scottii (Rchb.f.) Schltr.<br />

Oberonia wightiana Lindl.<br />

= Oberonia arnottiana Wight<br />

Pachystoma pubescens Blume<br />

= Pachystoma hirsuta (J. Joseph & Vajr.) C.S.<br />

Kumar & Manilal<br />

Bangladesh, Thailand, Myanmar, Java Govaerts et al. <strong>2012</strong><br />

Sri Lanka Fernando & Ormerod 2008<br />

Nepal, Bangladesh, Myanmar Govaerts et al. <strong>2012</strong><br />

Sri Lanka Fernando & Ormerod 2008<br />

China, Taiwan, Nepal, Cambodia, Laos,<br />

Myanmar<br />

Govaerts et al. <strong>2012</strong><br />

22 Peristylus lawii Wight Nepal, Myanmar Govaerts et al. <strong>2012</strong><br />

23 Peristylus spiralis A.Rich. Sri Lanka Fernando & Ormerod 2008<br />

24<br />

25<br />

Phalaenopsis mysorensis C.J. Saldanha<br />

= Kingidium niveum C.S. Kumar<br />

Thrixspermum musciflorum A.S. Rao & J. Joseph<br />

= Thrixspermum musciflorum var. nilagiricum J.<br />

Joseph & Vajr.<br />

Sri Lanka Fernando & Ormerod 2008<br />

Arunanchal Pradesh Lucksom 2007; Govaerts et al. <strong>2012</strong><br />

26 Vanda wightii Rchb. f. Sri Lanka Fernando & Ormerod 2008<br />

27<br />

Vanilla wightii Lindl. ex Wight<br />

= Vanilla wightiana Lindl.<br />

Sri Lanka Arenas & Cribb 2010<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425<br />

3423


Peninsular India orchids<br />

References<br />

Ahmedullah, M. & M.P. Nayar (1987). Endemic Plants <strong>of</strong> the<br />

Indian region—Vol. 1. Peninsular India, Botanical Survey<br />

<strong>of</strong> India, Calcutta, 262pp.<br />

Axelrod, D.I. (1971). Plate tectonics in relation to the history<br />

<strong>of</strong> angiosperm vegetation in India. Birbal Sahni Institute<br />

Paleobotany Special Publication 1: 5–18.<br />

Ansari, R. & N.P. Balakrishnan (1990). A revision <strong>of</strong> the<br />

India species Oberonia (Orchidaceae). Orchid Monographs<br />

4: 1–82.<br />

Arenas, M.A.S. & P. Cribb (2010). A new infrageneric<br />

classification and synopsis <strong>of</strong> the genus Vanilla Plum. ex<br />

Mill. (Orchidaceae: Vanillinae). Lankesteriana 9: 355–<br />

398.<br />

Bachulkar, M. (2010). Addition to the flora <strong>of</strong> Maharashtra.<br />

<strong>Journal</strong> <strong>of</strong> the Bombay Natural History Society 107(3):<br />

266.<br />

Blatter, E. (1928). A list <strong>of</strong> orchids with some new species<br />

from High Wavy Mountain (Madurai District). <strong>Journal</strong> <strong>of</strong><br />

the Bombay Natural History Society 32: 518–523.<br />

Bose, T.K. & S.K. Bhattacharjee (1980). Orchids <strong>of</strong> India.<br />

Naya Prokash, Calcutta, xxiii+538pp.<br />

Chandrabose, M. & N.C. Nair (1988). Flora <strong>of</strong> Coimbatore.<br />

Bishen Singh Mahendra Pal Singh, Dehradun,<br />

xxxviii+398pp.<br />

Cooke, T. (1958). Flora <strong>of</strong> Bombay. Vol. 3. (Repd. ed.)<br />

Botanical Survey <strong>of</strong> India, Calcutta, 649pp.<br />

eFloras (<strong>2012</strong>). Published on the Internet, http://www.efloras.<br />

org by Missouri Botanical Garden, St. Louis, Missouri &<br />

Harvard University Herbaria, Cambridge.<br />

Fernando, S.S. & P. Ormerod (2008). An Annotated checklist<br />

<strong>of</strong> the Orchids <strong>of</strong> Sri Lanka. Rheedea 18: 1–28.<br />

Fischer, C.E.C. (1928). Orchidaceae In: Gamble, J.S. (ed.)<br />

Flora <strong>of</strong> Presidency <strong>of</strong> Madras. West, Newman and Adlard,<br />

London, 8: 1399–1478.<br />

Gaikwad, S.P. & S.R. Yadav (2004). Endemic Flowering<br />

Plant species <strong>of</strong> Maharashtra and their possible utilization,<br />

pp. 27–58. In: Pullaiah, T. (ed.). Biodiversity in India—Vol.<br />

3. Regency Publications, New Delhi, vii+244.<br />

Gopalan, R. & A.N. Henry (2000). Endemic Plants <strong>of</strong> India:<br />

CAMP for the Strict Endemics <strong>of</strong> Agasthiyamalai Hills,<br />

SW Ghats. Bishen Singh Mahendra Pal Singh, Dehradun,<br />

476pp.<br />

Govaerts, R., Dransfield, J., Zona, S.F, Hodel, D.R. &<br />

A. Henderson (<strong>2012</strong>). World Checklist <strong>of</strong> Arecaceae.<br />

Facilitated by the Royal Botanic Gardens, Kew. Published<br />

on the Internet; http://apps.kew.org/wcsp/ Retrieved <strong>2012</strong>-<br />

01-22.<br />

Henry, A.N., V. Chitra & N.P. Balakrishnan (1989). Flora <strong>of</strong><br />

Tamilnadu. India Ser. 1: Analysis. Vol. 3, Botanical Survey<br />

<strong>of</strong> India, Coimbatore, 171pp.<br />

Hooker, J.D. (1888–1890). Flora <strong>of</strong> British India. Vols. 5 & 6.<br />

L. Reeve & Co., London. 667–858 & 1–198pp.<br />

IPNI (<strong>2012</strong>). The International Plant Name Index. http://www.<br />

ipni.org.<br />

J.S. Jalal & J. Jayanthi<br />

Joseph, J. (1987). Orchids <strong>of</strong> Nilgiris. Botanical Survey <strong>of</strong><br />

India, Howrah, 184pp.<br />

Joshi, V.C. & M.K. Janarthanam (2004). The diversity <strong>of</strong><br />

life-form type, habitat preference and phenology <strong>of</strong> the<br />

endemics in the Goa region <strong>of</strong> the Western Ghats, India.<br />

<strong>Journal</strong> <strong>of</strong> Biogeography 31: 1227–1237.<br />

Karthikeyan, S. (2000). A statistical analysis <strong>of</strong> flowering<br />

plants <strong>of</strong> India, pp. 201–217. In: Singh, N.P., P.K. Singh, P.K.<br />

Hajra & B.D. Sharma (eds.). Flora <strong>of</strong> India, Introductory<br />

Vol. 2, Botanical Survey <strong>of</strong> India, Calcutta, xi+469pp.<br />

Keshavamurthy, K.R. & S.N. Yoganarasimhan (1990). Flora<br />

<strong>of</strong> Coorg (Kodagu), Karnataka, India. Vinsat Publishers,<br />

Bangalore, vii+794pp.<br />

Khanam, M., M.Z. Uddin, M.S. Khan & M.A. Hassan (2001).<br />

Our present knowledge on the Terrestrial Orchidaceae.<br />

Bangladesh <strong>Journal</strong> <strong>of</strong> Plant Taxonomy 8(2): 35–49.<br />

Kumar, C.S. & K.S. Manilal (1994). A Catalogue <strong>of</strong> India<br />

Orchids. Bishen Singh Mahendra Pal Singh, Dehradun,<br />

iii+162pp.<br />

Kumar, C.S., B.V. Shetty, S.S.R. Bennet, T.A. Rao, S.<br />

Molur & S. Walker (eds.) (2001). Endemic Orchids <strong>of</strong> the<br />

Western Ghats. Conservation Assessment and Management<br />

Plan (C.A.M.P.) Workshop. Wildlife Information Liaison<br />

Development Society and Zoo Outreach Organisation,<br />

Coimbatore, India, 195pp.<br />

Kumar, C.S., P.C. Suresh Kumar, M. Sibi & A. Kumar<br />

(2008). A new species <strong>of</strong> Gastrodia R. Br. (Orchidaceae)<br />

from Silent Valley, Kerala, India. Rheedea 18(2): 107–110.<br />

Kurzweil, H. (2005). Taxonomic Studies in the Genus Disperis<br />

(Orchidaceae) in Southeast Asia. Blumea 50: 143–152.<br />

Lakshminarasimhan, P. (1996). Monocotyledons. In:<br />

Sharma, B.D., S. Karthikeyan & N.P. Singh (eds). Flora<br />

<strong>of</strong> Maharashtra State, Series 2. Botanical Survey <strong>of</strong> India,<br />

Calcutta 794pp.<br />

Lucksom, S.Z. (2007). The Orchids <strong>of</strong> Sikkim and North East<br />

Himalaya. S.Z. Lucksom, Siliguri, xxxx+984pp.<br />

Mabberley, D.J. 2008. Mabberley’s plant-book: a portable<br />

dictionary <strong>of</strong> plants, their classification and uses, third<br />

edition, revised, Cambridge University Press, Cambridge,<br />

xviii, 1021pp.<br />

Manilal, K.S. (1988). Flora <strong>of</strong> Silent Valley, Tropical Rain<br />

forests <strong>of</strong> India, Calicut, xi+398pp.<br />

Manilal, K.S. & C.S. Kumar (2004). Orchid Memories: A<br />

tribute to Gunnar Seidenfaden. Indian Association for<br />

Angiosperm Taxonomy (IAAT), Calicut, 265pp.<br />

Mishra, D.K. & N.P. Singh (2001). Endemic and <strong>Threatened</strong><br />

Flowering Plants <strong>of</strong> Maharashtra. Botanical Survey <strong>of</strong><br />

India, Calcutta, 414pp.<br />

Misra, S. (2007). Orchids <strong>of</strong> India - A Glimpse. Bishen Singh<br />

Mahendra Pal Singh, Dehradun, v+402pp.<br />

Misra, S., S.P. Panda & D. Sahoo (2008). Orchid Flora <strong>of</strong><br />

Andhra Pradesh, India. Bulliten <strong>of</strong> Botanical Survey <strong>of</strong><br />

India 50(1–4): 129–146.<br />

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B.<br />

da Fonseca & J. Kent (2000). Biodiversity hotspots for<br />

conservation priorities. Nature 403: 853–858.<br />

3424<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425


Peninsular India orchids<br />

Narayanan, M.K.R., K.M. Manudev, P. Sujanapal, N.A.<br />

Kumar, M. Sivadasan & A.H. Alfarhan (2010). Oberonia<br />

swaminathanii sp. nov. (Orchidaceae) from Kerala, India.<br />

Nordic <strong>Journal</strong> <strong>of</strong> Botany 28: 713–715.<br />

Nayar, M.P. (1977). Changing pattern <strong>of</strong> distribution <strong>of</strong><br />

endemic genera (Angiosperm). <strong>Journal</strong> <strong>of</strong> Economic and<br />

Taxonomic Botany 1: 99–110.<br />

Nayar, M.P. (1996). Hot Spots <strong>of</strong> Endemic Plants <strong>of</strong> India,<br />

Nepal and Bhutan. Tropical Botanic Garden and Research<br />

Institute, Thiruvananthapuram, 252pp.<br />

Nayar, M.P, M. Ahmed & D.C.S. Raju (1984). Endemic and<br />

rare plants <strong>of</strong> Eastern Ghats. Indian <strong>Journal</strong> <strong>of</strong> Forestry 7:<br />

35–42.<br />

Nayar, T.S., M. Sibi, A.R. Beegam, N. Mohanan & G.<br />

Rajkumar (2008). Flowering Plants <strong>of</strong> Kerala: Status and<br />

Statistics. Rheedea 18(2): 95–106.<br />

Pradhan, U.C. (1976). Indian Orchids: Guide to Identification<br />

and Culture 1. Kalimpong. Premulaceae Books, 188pp.<br />

Pullaiah, T. (1997). Flora <strong>of</strong> Andhra Pradesh—Vol. 3. Scientific<br />

Publishers, Jodhpur, IV+1349pp.<br />

Rao, G.V.S. & G.R. Kumari (2003). Flora <strong>of</strong> Visakapatnam<br />

District —Vol. 1. Botanical Survey <strong>of</strong> India, Kolkata,<br />

xiv+612pp.<br />

Rao, R.S. (1986). Flora <strong>of</strong> Goa, Diu, Daman, Dadra and<br />

Nagarhaveli —Vol. 2. Botanical Survey <strong>of</strong> India, Howrah,<br />

xxx+546pp.<br />

Rao, T.A. (1998). Conservation <strong>of</strong> Wild Orchids <strong>of</strong> Kodagu<br />

in the Western Ghats. The Karnataka Association for the<br />

Advancement <strong>of</strong> Science, Bangalore, 242pp.<br />

Raskoti, B.B. (2009). The Orchids <strong>of</strong> Nepal. Bhakta Bahadur<br />

Raskoti & Rita Ale. iv+251pp.<br />

J.S. Jalal & J. Jayanthi<br />

Rathakrishnan, N.C. & V. Chitra (1984). Distribution <strong>of</strong><br />

endemic orchids in Karnataka, Kerala and Tamil Nadu.<br />

<strong>Journal</strong> <strong>of</strong> Economic and Taxonomic Botany 5: 1001–<br />

1006.<br />

Saldanha, C.J. & D.H. Nicolson (1976). Flora <strong>of</strong> Hassan<br />

District, Karnataka, India. Amerind Publishing Co. Pvt.<br />

Ltd., New Delhi, viii+922pp.<br />

Santapau, H. & Z. Kapadia (1966). The Orchids <strong>of</strong> Bombay.<br />

Manager <strong>of</strong> Publications, Delhi, vi+239pp.<br />

Sardesai, M.M. & S.R. Yadav (2004). Genus Habenaria Willd.<br />

(Orchidaceae) in Maharashtra, pp. 144–172. In: Pullaiah, T.<br />

(ed.). Biodiversity in India—Vol. 3. Regency Publications,<br />

New Delhi, vii+244pp.<br />

Singh, K.P., S. Phukan & P. Bujarbarua (2001). Orchidaceae,<br />

pp. 1735–1846. In: Singh, N.P. & D.K. Singh (eds.).<br />

Floristic Diversity and Conservation Strategies in India—<br />

Vol. 4. Botanical Survey <strong>of</strong> India, Kolkata. vii+2340pp.<br />

Subramanayam, K. & M.P. Nayar (1974). Vegetation and<br />

phytogeography <strong>of</strong> the Western Ghats, pp. 178–196. In:<br />

Mani, M.S. (ed.). Ecology and Biogeography <strong>of</strong> India.<br />

Hague, Netherland, 773pp.<br />

Tropicos (<strong>2012</strong>). Missouri Botanical Garden, Shaw Boulevard,<br />

St. Louis, Missouri. http://www.tropicos.org.<br />

Wu, Z. & D. Hong (eds.) (2009). Flora <strong>of</strong> China. Missouri<br />

Botanical Garden Press, St. Louis, 570pp.<br />

Yadav, S.R. & M.M. Sardesai (2002). Flora <strong>of</strong> Kolhapur<br />

District. Shivaji University, Kolhapur, xiv+679pp.<br />

Yoganarasimhan, S.N., K. Subramanyam & B.A. Razi<br />

(1981). Flora <strong>of</strong> Chikamagalur district, Karnataka, India.<br />

International Book Distributors, Dehradun, vii+407pp.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3415–3425<br />

3425


JoTT Sh o r t Co m m u n ic a t i o n 4(15): 3426–3432<br />

Ecology and conservation status <strong>of</strong> canebrakes in<br />

Warangal District <strong>of</strong> Andhra Pradesh, India<br />

Sateesh Suthari 1 & Vatsavaya S. Raju 2<br />

1,2<br />

Plant Systematics Laboratory, Department <strong>of</strong> Botany, Kakatiya University, Warangal, Andhra Pradesh 506009, India<br />

Email: 1 suthari.botany@gmail.com, 2 rajuvatsavaya@gmail.com (corresponding author)<br />

Abstract: The article describes cane-cum-bat roost site at<br />

Palampet (Warangal District, Andhra Pradesh, India). Although<br />

notified as a cane reserve by the state government, it is not spared<br />

<strong>of</strong>f the usual habitat depletion and destruction. The functional<br />

pyramid formed <strong>of</strong> Calamus-Terminalia-Pteropus is reported<br />

here as first <strong>of</strong> its kind. This article also places on record seven<br />

more cane sites besides noting the importance <strong>of</strong> the ecology <strong>of</strong><br />

Morancha Vagu and stressing the need for preserving its banks<br />

by planting Calamus rotang L. Ecological education to the local<br />

people about biodiversity value and conservation at all levels <strong>of</strong><br />

its organization is called for.<br />

Keywords: Bat roosting, canebrakes, conservation, Palampet,<br />

Terminalia.<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Sampath Kumar<br />

Manuscript details:<br />

Ms # o3207<br />

Received 18 May <strong>2012</strong><br />

Final received 04 <strong>December</strong> <strong>2012</strong><br />

Finally accepted 11 <strong>December</strong> <strong>2012</strong><br />

Citation: Suthari, S. & V.S. Raju (<strong>2012</strong>). Ecology and conservation status<br />

<strong>of</strong> canebrakes in Warangal District <strong>of</strong> Andhra Pradesh, India. <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3426–3432.<br />

Copyright: © Sateesh Suthari & Vatsavaya S. Raju <strong>2012</strong>. Creative<br />

Commons Attribution 3.0 Unported License. JoTT allows unrestricted use<br />

<strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes, reproduction and<br />

distribution by providing adequate credit to the authors and the source <strong>of</strong><br />

publication.<br />

Acknowledgements: Sateesh Suthari is obliged to Dr. V.K. Dadhwal,<br />

Project Director, NCP (IGBP), Dr. Sarnam Singh (Deputy Project Director),<br />

IIRS, Dehra Dun, for the financial assistance through Vegetation Carbon<br />

Pool study. The authors thank the <strong>of</strong>ficials <strong>of</strong> the Andhra Pradesh Forest<br />

Department in general and Dr. B. Prabhakar, DFO, Warangal North Forest<br />

Division, in particular for his concern to conserve cane site and allowing<br />

us to assess its stand structure, Dr. C. Srinivasulu (Osmania University,<br />

Hyderabad) for identifying the bat species, and the Head, Department <strong>of</strong><br />

Botany, Kakatiya University, Warangal, for facilities.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Canes are one <strong>of</strong> the principal non-timber forest<br />

product (NTFP) species in India. Canes are otherwise<br />

called rattans (‘rotan’ is the local Malaya term for<br />

cane). Indonesia dominates rattan export whilst China<br />

is a major rattan importer with 59% <strong>of</strong> global imports<br />

(Hirschberger 2011). Concerned by the reports <strong>of</strong><br />

depleting rattan resource in the native habitats, World<br />

Wildlife Fund (WWF) has been piloting new initiatives<br />

focusing on rattan sustainability and traceability since<br />

2009 (Hirschberger 2011). In India, the ‘lepidocaryoid’<br />

lianas <strong>of</strong> Arecaceae comprise about 60 species<br />

spread among four genera, namely, Calamus L.,<br />

Daemonorops Blume ex Schult.f., Korthalsia Blume<br />

and Plectocomia Mart. & Blume, and distributed in<br />

three major phytogeographical areas—peninsular<br />

India, eastern Himalaya and Andaman Nicobar Islands<br />

(Renuka 2001). Of these, Calamus (Gr. calamos =<br />

reed) is the largest <strong>of</strong> the palm genera with around 375<br />

species (Sunderland <strong>2012</strong>). The canes are spiny palms<br />

belonging to the pantropical subfamily Calamoideae <strong>of</strong><br />

Arecaceae with its members mostly climbing, trailing<br />

and acauliscent phanerophytes.<br />

Canebrakes in Andhra Pradesh<br />

In the “Flora <strong>of</strong> the Presidency <strong>of</strong> Madras”, Fischer<br />

(1932) accounted three species <strong>of</strong> Calamus from<br />

coastal districts <strong>of</strong> the present-day Andhra Pradesh.<br />

They are, as we assess: (i) C. latifolia Roxb. reported<br />

from Madgole [Madugula] Hills <strong>of</strong> Visakhapatnam<br />

and Dharwada <strong>of</strong> West Godavari (Ramarao & Henry<br />

1996), where it is called ‘pemu, peda peka bettam’;<br />

(ii) C. rotang L. reported as bettam from the drier<br />

tracts <strong>of</strong> Kurnool, Nellore and Vizianagaram districts.<br />

Also recorded from Warangal District along the<br />

Morancha channel and below the Ramappa tank<br />

(Khan 1953) <strong>of</strong> Telangana (former Hyderabad State)<br />

and Kambakkam Hills <strong>of</strong> Chittoor District (Chetty<br />

et al. 2008) <strong>of</strong> Rayalaseema; and (iii) C. viminalis<br />

3426<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432


Canebrakes in Warangal<br />

Willd. reported from Visakhapatnam District and<br />

Rampa Hills <strong>of</strong> East Godavari (Fischer 1932), as well<br />

from Isakagadda-Seethampet in Srikakulam District<br />

(G.V. Subbarao 62464: collection at MH). Although<br />

two cane species are known from Visakhapatnam<br />

District, Subbarao & Kumari (2008) reported only C.<br />

viminalis var. fasciculatus (Roxb.) Becc. as a rare cane<br />

in shade and/or moist localities. It has declined due<br />

to c<strong>of</strong>fee plantation and ‘podu’ (shifting) cultivation<br />

(Subbarao & Kumari 2008). Curiously, it is the only<br />

cane species that was reported to be associated with<br />

bamboo (‘veduru’ in Telugu) in Vedurupalli Village in<br />

the region (Subbarao & Kumari 2008). Due to canal<br />

construction near Krishnanandi (Kurnool District), the<br />

entire dense population <strong>of</strong> Calamus rotang disappeared<br />

in a span <strong>of</strong> two decades (Ellis 2002) despite being<br />

continuously fed by the spring waters <strong>of</strong> Mahanandi.<br />

Warangal District has a canebrake near Ramappa<br />

Temple, Palampet, in a small area. It was mapped<br />

and described by Reddy et al. (2008). For its existing<br />

biodiversity value, this canebrake was proposed<br />

for on-site conservation by Andhra Pradesh State<br />

Biodiversity Board. It is the sole, somewhat big patch<br />

<strong>of</strong> cane <strong>of</strong> about 2ha (which occupied 11.4ha in 1974<br />

and 5.3ha in 2004 - a decline <strong>of</strong> 53.5% <strong>of</strong> the area in<br />

three decades and about 28.23% loss in the last eight<br />

years) (pers. obs.), known to survive in the whole <strong>of</strong><br />

Telangana region. The present article is a sequel to<br />

the recent concerted efforts by the local people to burn<br />

and convert the cane-habitat-cum-bat-roosting site into<br />

paddy fields, notwithstanding the fact that is a notified<br />

reserve residing alongside the road, proximate to the<br />

Ramappa Temple and Palampet Village.<br />

Results and Discussion<br />

1. New canebrake sites discovered: During the<br />

aboveground vegetational carbon estimation study,<br />

the authors discovered a series <strong>of</strong> canebrakes (Suthari<br />

& Raju 2011) though smaller and patchy along the<br />

downstream and away from Ramappa tank in a 5km<br />

stretch in the northwestern direction. It is locally<br />

called ‘chapa barige teega’. Besides the main patch<br />

(18 0 15’42.5’’N & 79 0 57’02.9’’E; 201m), the following<br />

eight new cane sites are found along Morancha Vagu<br />

and reported here for the first time (Table 1).<br />

2. Ecology <strong>of</strong> canebrake at Palampet: In order to<br />

know the health status <strong>of</strong> the cane (Calamus rotang<br />

L.) ecosystem (Palampet Village, Mandal Venkatapur,<br />

Table 1. New cane patches discovered along the<br />

downstream <strong>of</strong> Ramappa and Morancha Vagu.<br />

Latitude Longitude Altitude (m)<br />

1 18 0 15’05.8’’ 79 0 56’28.4’’ 205*<br />

2 18 0 17’02.0’’ 79 0 56’59.3’’ 200<br />

3 18 0 17’12.9’’ 79 0 56’52.9’’ 199<br />

4 18 0 17’16.9’’ 79 0 56’52.6’’ 199<br />

5 18 0 17’19.0’’ 79 0 56’57.7’’ 199<br />

6 18 0 17’24.7’’ 79 0 57’02.0’’ 198<br />

7 18 0 17’33.0’’ 79 0 57’01.5’’ 198<br />

8 18 0 19’43.8’’ 79 0 52’41.8’’ 193**<br />

S. Suthari & V.S. Raju<br />

* - Near Ramappa tank; ** - Morancha Vagu, near Dharmaraopet<br />

Division Mulugu, Warangal District), the ecology <strong>of</strong><br />

the habitat was studied. It is to gather baseline data and<br />

to find indicator species to facilitate the monitoring <strong>of</strong><br />

vegetational changes due to the driving abiotic and/or<br />

biotic factors.<br />

Abiotic environment: It is a prevailing tropical<br />

environment, with additional humidity realized<br />

by evapotranspiration from the great water body<br />

(Ramappa tank) nearby and transpiration from the<br />

wet paddy fields all around. The region receives<br />

southwest monsoon between May–August and the<br />

annual rainfall is 1100mm. The annual temperature<br />

ranges from 30–43 0 C. Morancha Vagu, the natural<br />

drain from Ramappa tank with its twists and turns,<br />

ensures water flow throughout the year and runs about<br />

35km serving as a drain-cum-water provider to about<br />

4,856.23ha <strong>of</strong> agricultural land before emptying into<br />

Maneru, a tributary <strong>of</strong> the Godavari River. The sandy<br />

loam with rich litter contributed by cane and deciduous<br />

trees and buttresses <strong>of</strong> arjuna trees holding the wet soil,<br />

collectively created the swamp. The local temperature<br />

is 2–3 0 C lesser than the surroundings.<br />

Biotic environment: It is a tropical dry deciduous<br />

forest dominated by riparian elements such as<br />

Terminalia arjuna (Roxb. ex DC.) Wight & Arn. and<br />

Barringtonia acutangula Gaertn.<br />

(A) Animal communities residing, resting, foraging<br />

and passing through the canebrake: The conspicuous<br />

elements are the noisy fruit bats, Pteropus giganteus<br />

Brünnich, 1782 roosting on tree tops, Apis dorsata<br />

Fabricius, 1793 (Giant Honey Bees) housing and<br />

abandoning the hives on high branches <strong>of</strong> Arjuna Tree,<br />

butterfly species (largely members <strong>of</strong> families Pieridae<br />

(whites and sulphurs) and Papilionidae (swallow-<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432<br />

3427


Canebrakes in Warangal<br />

tails) as pollinators, dragonflies, water insects, beetles,<br />

besides the grazers like cattle, sheep and goats. About<br />

20 monkeys (Macaca mulatta Zimmermann, 1780:<br />

Cercopithecidae) including young ones were found<br />

resting. No conflict was noticed between bats and<br />

bees, birds or monkeys in our visits.<br />

(B) Plant Community inside and bordering the<br />

Canebrake: The species are presented according to the<br />

growth habit and habitat: (a) Trees - top storey: (i)<br />

Indigenous forest elements: Albizia odoratissima (L.f.)<br />

Benth., Cordia dichotoma G. Forst., Ficus virens Aiton,<br />

Holarrhena pubescens Wall., Holoptelea integrifolia<br />

(Roxb.) Planch., Terminalia arjuna and T. bellirica<br />

(Gaertn.) Roxb., (ii) Planted/Naturalized species:<br />

Acacia nilotica (L.) Delile, Albizia saman (Jacq.) F.<br />

Muell., Millingtonia hortensis L.f., Prosopis cineraria<br />

Druce and P. juliflora (Sw.) DC.; (b) Trees - under<br />

storey (small trees to shrubs): Alangium salviifolium<br />

(L.f.) Wangerin, Barringtonia acutangula (L.) Gaertn.<br />

(along the stream), Butea monosperma (Lam.) Taub,<br />

Ficus hispida L.f., Grewia tiliifolia Vahl, Pavetta indica<br />

L., Steblus asper Lour. and Strychnos nux-vomica L.;<br />

(c) Palms/Lianas: Calamus rotang is the predominant<br />

ascending palm in the core area besides the few planted<br />

and/or running wild Borassus flabellifer L. and Phoenix<br />

sylvestris (L.) Roxb. and the liana Derris scandens<br />

(Roxb.) Benth. along the margin <strong>of</strong> the swamp; (d)<br />

Climbers/stragglers: Abrus precatorius L., Capparis<br />

oblongifolia Forssk., C. zeylanica L., Cardiospermum<br />

halicacabum L. var. microcarpum (Kunth) Blume,<br />

Coccinea grandis (L.) J. Voigt, Desmodium triflorum<br />

(L.) DC., Gymnema sylvestre (Retz.) Schult., Ipomoea<br />

sepiaria J. Koenig ex Roxb., Momordica charantia<br />

L., Momordica dioica Roxb. ex Willd., Olax scandens<br />

Roxb., Operculina turpethum (L.) Silva Manso,<br />

Phyllanthus reticulatus Poir., Teramnus labialis (L.f.)<br />

Spreng., Tinospora cordifolia (Willd.) Miers, Tragia<br />

plukenetii Radcl.-Sm. and Tylophora indica (Burm.f.)<br />

Merr.; and (e) Ground cover: Achyranthes aspera L.,<br />

Abutilon indicum (L.) Sweet, Anisomeles indica (L.)<br />

Kuntze, Boerhavia diffusa L., Cynodon dactylon (L.)<br />

Pers., Cyperus rotundus L., Grangea maderaspatana<br />

(L.) Desf., Heliotropium indicum L., Kyllinga odorata<br />

Vahl, Phyllanthus amarus Schumach. & Thonn.,<br />

Plumbago zeylanica L. and Urena lobata L.<br />

Vegetation <strong>of</strong> the stream: (a) Aquatic: (i) Rootedsubmerged:<br />

Ottelia alismoides (L.) Pers.; (ii) Rootedemergent:<br />

Actinoscirpus grossus (L.f.) Goetgh. & D.A.<br />

S. Suthari & V.S. Raju<br />

Simpson, Ludwigia octovalvis (Jacq.) P.H. Raven,<br />

Nymphaea nouchali Burm.f., Persicaria barbata (L.)<br />

H. Hara and P. hydropiper (L.) Delarbre in the middle <strong>of</strong><br />

the stream and Aeschynomene indica L., Alternanthera<br />

sessilis (L.) R. Br. ex DC., Ammannia baccifera L.,<br />

Echinochloa colona (L.) Link, Eclipta prostrata (L.)<br />

L., Hygrophila auriculata (Schumach.) Heine and<br />

Ipomoea aquatica Forssk. along the margins, and (b)<br />

Amphibious: Centella asiatica (L.) Urb., Cyanotis<br />

axillaris (L.) D. Don ex Sweet, Ludwigia perennis L.,<br />

Melochia corchorifolia L., Phyla nodiflora (L.) Green<br />

and Phyllanthus debilis Klein ex Willd.<br />

Alien invasives: Along the margin <strong>of</strong> the canebrake<br />

are Ageratum conyzoides L., Chromolaena odorata<br />

(L.) R.M. King & H. Rob., Lantana × aculeata L.,<br />

Senna auriculata (L.) Roxb., S. obtusifolia (L.) H.S.<br />

Irwin & Barneby, S. occidentalis (L.) Roxb., S.<br />

sophera (L.) Roxb., Waltheria indica L. and Xanthium<br />

strumarium L. among the herbs and Millingtonia<br />

hortensis (found only one tree, planted along the<br />

roadside and spreading with root suckers), Zizyphus<br />

mauritiana L. and saplings <strong>of</strong> Azadirachta indica A.<br />

Juss. (future threat) amongst the running wild trees.<br />

Ipomoea fistulosa Mart. ex Choisy, the problematic<br />

amphibious plant species, occupied the mid stream at<br />

one place (Image 1g).<br />

Biodiversity<br />

The diversity <strong>of</strong> the canebrake, like any habitat can<br />

be looked at genetic, species and ecosystem levels.<br />

(a) Genetic level: Sreekumar & Renuka (2006)<br />

demonstrated the extent <strong>of</strong> genetic diversity at intraand<br />

inter-population levels in Calamus thwaitesii<br />

Becc., using molecular markers. Interestingly,<br />

the genetic polymorphism was discovered to be<br />

more within the population (70.79%) than the inter<br />

populations (29.21%). Such information is sought for<br />

C. rotang, for its populations across habitats in India.<br />

(b) Species level: The habitat is largely occupied<br />

by the population <strong>of</strong> a single species, Calamus rotang.<br />

It is a dioecious, trailing or ascending palm, with<br />

perennation by rhizome (Image 1j). Both pistillate and<br />

staminate plants were found with regular flowering and<br />

fruiting (Image 1b). For a sexually breeding dioecious<br />

species, sex ratios are important. In this primary<br />

report, the sex ratio and species diversity indices for<br />

the site could not be carried out since the habitat is a<br />

dense thicket and burnt in part. However, there are<br />

3428<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432


Canebrakes in Warangal<br />

reports about the breeding system <strong>of</strong> this species being<br />

affected due to presence <strong>of</strong> either <strong>of</strong> the two morphs in<br />

a particular habitat. For example, among the planted<br />

canes at Lalbagh (Karnataka), the populations were<br />

staminate in C. rotang or pistillate in C. delessertianus<br />

Becc. (Manohara et al. 2007).<br />

(c) Ecosystem level: No significant differences in<br />

growth form, leaf size, cane diameter and phenology<br />

were noticed along the gradient, that is, altitude <strong>of</strong><br />

the Morancha Vagu, down the stretch <strong>of</strong> 5km. The<br />

size <strong>of</strong> cane (4–6x6–8 m on canopy; 3x6 m on bank)<br />

was based on the stream bund maintained abutting<br />

the fields and the trees available for ascending. The<br />

consistent riparian element found was Barringtonia<br />

acutangula and at places, the invasive Ficus hispida<br />

providing the opportunity. The liana competitors are<br />

Derris scandens and Combretum album Pers. The<br />

leaves <strong>of</strong> Calamus are good in intercepting the splat<br />

effect <strong>of</strong> rain and thereby improving the water-holding<br />

capacity <strong>of</strong> the soil while its litter enriches the soil<br />

(Image 1c). The fruits are edible.<br />

If one looks at the cane singularly <strong>of</strong> the ecosystem,<br />

it is largely the alpha (population) diversity. It is<br />

due to the accompanied differences between the two<br />

morphs <strong>of</strong> this dioecious species. The beta diversity<br />

(inter-population variation that is with other patches <strong>of</strong><br />

cane around) is limited. It is because <strong>of</strong> the presence<br />

<strong>of</strong> individuals (clones) <strong>of</strong> either <strong>of</strong> the two forms<br />

(staminate or pistillate) occurring in small patches<br />

along the Morancha vagu.<br />

Bat-cane axis: Bats are reported as a dispersal<br />

agent at least for Calamus thwaitesii whose pulpy<br />

fruits are sweet and edible (Renuka 1995; Sreekumar<br />

& Renuka 2006). Primates like macaques and human<br />

beings are fond <strong>of</strong> its fruits. This provides a functional<br />

link among bat-roosting, cane-farming and monkeys<br />

at places in India.<br />

Cane site as roost site: The canebrake with its<br />

associated co-dominant emergent tall-stature trees,<br />

especially the species Terminalia arjuna and T.<br />

bellirica (Combretaceae) harbours the Indian Flying<br />

Fox Pteropus giganteus Brünnich, 1782 native to<br />

India, Sri Lanka, Pakistan, Nepal, Bhutan, Bangladesh,<br />

Myanmar and China.<br />

The genus Pteropus Brission, 1762 is represented<br />

by four species in South Asia. Pteropus giganteus,<br />

distributed throughout India, is a keystone species<br />

listed by IUCN as ‘Least Concerned’, for its wide<br />

S. Suthari & V.S. Raju<br />

distribution and colony-size. It is strongly colonial<br />

and roosts on high trees in large aggregations. It<br />

is primarily nocturnal, known for its ecological<br />

role as pollinator and seed disperser <strong>of</strong> native tree<br />

species thereby playing a positive role in tropical<br />

forest succession and biodiversity nesting. In India,<br />

Pteropus giganteus has a role in the pollination <strong>of</strong><br />

very important, economic and ethnic plant Madhuca<br />

longifolia (J. Koenig ex L.) J.F. Macbr. (syn. M.<br />

latifolia; Nathan et al. 2009) which abounds locally<br />

aside the cultural value assigned—either considered<br />

sacred (Marimuthu 1988) or evil. It is phytophagous<br />

(feeding on fruits, petals and leaves) and is one <strong>of</strong> the<br />

13 species <strong>of</strong> fruit bats found in India. Despite the<br />

constructive role these bats play, all bat species except<br />

Salim Ali’s Fruit Bat (Latidens salimalii Thonglongya,<br />

1972) are categorized as vermin (which can be captured<br />

or killed) under Schedule V <strong>of</strong> the Indian Wildlife<br />

(Protection) Act, 1972 and amended acts. This needs<br />

to be reversed (Singaravelan et al. 2009). It is also<br />

the demand <strong>of</strong> the present authors since the ecological<br />

services rendered, such as the dispersal <strong>of</strong> pollen and<br />

fruit, outweigh the damage done to the ripe fruits <strong>of</strong><br />

orchards. So, Pteropus giganteus is not to be regarded<br />

as a pest and instead efforts should be made to ensure<br />

its conservation (Mahamood-Ul-Hassan et al. 2010).<br />

Pteropus giganteus (vernacular ‘gabbilam’; Image<br />

1g inset) prefers the tall, robust, emergent (top canopy)<br />

trees, either heavily foliated, proximate to water<br />

bodies or near habitations, plantations and agricultural<br />

fields for roosting whilst feeding on fruits <strong>of</strong> wild and/<br />

or cultivated plants like areca nut, banana, cashew,<br />

figs, guava, jackfruit, jamaican cherry, litchi, mango,<br />

papaya, plantain, sapota and tropical almond. Since<br />

more <strong>of</strong> these fruits are <strong>of</strong> cultivated trees, there is a<br />

conflict between bat conservation and fruit growers.<br />

Besides, Indian Flying Fox is increasingly not only<br />

deprived <strong>of</strong> natural choice <strong>of</strong> food but also its roosting<br />

sites. The threats are due to highway development and<br />

consequent felling <strong>of</strong> large/huge/aged-trees, rising <strong>of</strong><br />

plantations <strong>of</strong> neotropical species and/or Australian<br />

species which bear no edible fruits, selective cutting<br />

<strong>of</strong> berry/drupe-bearing native trees in the forests for<br />

harvesting the fruits, fodder and NTFPs, application <strong>of</strong><br />

pesticides, and capturing bats for the alleged medicinal<br />

values. The prime roost (arjuna) tree (Image 1h) is a<br />

well-known cardio-tonic plant besides bearing scores<br />

<strong>of</strong> other medicinal uses, serving as the food plant<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432<br />

3429


Canebrakes in Warangal<br />

S. Suthari & V.S. Raju<br />

Image 1. Canebrake cum bat (Indian Flying Fox) roost site.<br />

a - View <strong>of</strong> cane swamp in 2008; b - Fruits (unripe) <strong>of</strong> cane; c - Emerging cane shoot (ramet) and rich litter accrued;<br />

d - View <strong>of</strong> the canebrake after the recent man-made fire (January, <strong>2012</strong>); e&f - Natural vegetation <strong>of</strong> the stream;<br />

g - Part <strong>of</strong> the bat roost in the southwest margin <strong>of</strong> the swamp (inset Pteropus ginganteus), note the invasive alien<br />

Ipomoea fistulosa choking the stream; h - Main roost on two trees (Terminalia bellirica and T. arjuna from left to right) in<br />

the core area; i - Dead cane and still burning cut base <strong>of</strong> Arjuna Tree; j - Regenerating cane and naked ground predisposed<br />

for invasives; k - The cane site discovered near Ghanpur (Mulugu).<br />

for tassar silk worm and its ecophysiological role<br />

(e.g. water-holding capacity, keeping the banks <strong>of</strong><br />

streams intact; natural dispersal by its floating fruits<br />

with water movement and regeneration from stocks).<br />

Although coincidence, the wings are common to the<br />

roosting bat (Pteropus) and the fruits <strong>of</strong> preferred<br />

3430<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432


Canebrakes in Warangal<br />

host the arjuna tree (Pentaptera arjuna as named by<br />

Roxburgh), providing buoyancy in media like air and<br />

waters, respectively. The other roost tree, Terminalia<br />

bellirica, is also an important medicinal plant species,<br />

being one <strong>of</strong> the ‘triphalas’ from which the Ayurvedic<br />

laxative ‘triphala churn’ is prepared.<br />

In wet evergreen forests <strong>of</strong> Western Ghats, tall huge<br />

trees <strong>of</strong> species <strong>of</strong> Calophyllum L., Dipterocarpus C.F.<br />

Gaertn., Garcinia L. and Pterocarpus Jacq. whereas<br />

the exotic and planted Australian trees like Casuarina<br />

equisetifolia L. along the coast and species <strong>of</strong><br />

Eucalyptus LˊHér. elsewhere constituted the roosting<br />

trees for Pteropus giganteus. The liana associates <strong>of</strong><br />

roost trees are species <strong>of</strong> Derris Lour., Entada Adans.<br />

and Smilax L. For the first time, Calamus rotang is<br />

added to this list. The ground <strong>of</strong> roost site is planted<br />

with thickets (by bat seeding) <strong>of</strong> Lantana × aculeata<br />

as buffer to deter the cattle and people so that the bats<br />

are undisturbed (Chakaravarty et al. 2008). In the<br />

present site, it is served by the cane, Streblus asper,<br />

Alangium salviifolium and the network <strong>of</strong> climbers<br />

mentioned above. In Karnataka, a bat roost site on<br />

one acre land was spared by a private individual for<br />

conservation as heritage site (Chakravarthy et al.<br />

2008). It is something exemplary.<br />

The bat species showed considerable fidelity with<br />

the present roost site and the corresponding author <strong>of</strong><br />

this article has been observing the colony over the past<br />

25 years. The huge tall primary forest tree species<br />

are Terminalia arjuna (erra/tella/veru maddi) and<br />

Terminalia bellirica (tandra/tani). The former provided<br />

the required opportunity to the bat with its architecture<br />

(very high remote branching and radiant canopies),<br />

smooth shining bark which <strong>of</strong>fers additional visibility<br />

during night. As we note, it <strong>of</strong>fers a clear view to the<br />

bat and receives the cool breeze vertically from below<br />

and horizontally passing breeze from nearby Ramappa<br />

tank and wet paddy fields around, the required freefall<br />

take-<strong>of</strong>f, and the coriaceous green foliage put forth<br />

every year convenes the desired shade, shelter and<br />

protection from the ultraviolet rays. The bats preferred<br />

only Terminalia species despite the presence <strong>of</strong> more<br />

or less equally tall and strong trees available around,<br />

monkey menace and Apis dorsata forming the hives.<br />

The bats were found changing among these trees<br />

and between the two sub-colonies along the stream,<br />

separated by 500m. Perhaps, this is the first record <strong>of</strong><br />

Terminalia trees as bat roost.<br />

S. Suthari & V.S. Raju<br />

Threats to the conservation <strong>of</strong> cane-cum-bat<br />

roost site: The canes are known for their ethnic and<br />

economic uses besides the ecological role. Therefore,<br />

they are to be conserved forth right against the<br />

imminent threats like: (i) the occurrence <strong>of</strong> the cane<br />

in small or restricted (patchy) fragile ecosystems, (ii)<br />

habitat destruction, ‘podu’ cultivation and spread <strong>of</strong><br />

fire-promoting invasive plant species with their litter,<br />

and (iii) monkey menace, grazing by cattle and fuelwood<br />

collection.<br />

Political ecology: This subject has an approach<br />

to increase our understanding <strong>of</strong> the relationship<br />

between resource control and governance though<br />

it has not yet deeply engaged with ethnic studies.<br />

The destiny <strong>of</strong> conservation <strong>of</strong> the present habitat<br />

at Palampet is mainly driven by the prevailing local<br />

politico-economic environment. The landless people,<br />

policy <strong>of</strong> the government towards ‘podu’ and ‘patta’,<br />

and the general psyche <strong>of</strong> the public towards forest<br />

lands predispose the cane site for land use conversion.<br />

Our personal enquiry revealed that the local people<br />

desire the land to be acquired for farming despite the<br />

consequences. It is because the cane-site is fertile land<br />

– an island amidst the sea <strong>of</strong> paddy fields. The people<br />

believe that the land is wasted by forest department<br />

to maintain an unworthy plant species (as the locals<br />

do not use it). They are encouraged by the fact that<br />

they could manage a portion <strong>of</strong> land adjoining the<br />

canebrake for a village common (i.e. burial ground).<br />

The local politicians and revenue <strong>of</strong>ficials concerned<br />

have their interplay, though it is not their domain.<br />

Therefore, it is impossible to conserve the surviving<br />

canebrake unless and until the villagers <strong>of</strong> Palampet<br />

are educated and convinced that this cane site is no<br />

less important than the nearby treasures such as the<br />

Ramappa temple or Ramappa Lake, both built by the<br />

Kakatiyas (c.1213). The swamp is to be surveyed and<br />

fenced and notified to the public through repeated<br />

announcements that it is a serious <strong>of</strong>fence to cut or<br />

remove the cane or disturb the bats. One must see<br />

that the local school/college management adopts<br />

the site for biodiversity conservation and ecological<br />

studies by the students, and they are made party to the<br />

environmental education to the citizens <strong>of</strong> the villages<br />

around.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432<br />

3431


Canebrakes in Warangal<br />

REFERENCES<br />

Chakravarthy, A.K., H.M. Yeshwanth, L.V. Kumar &<br />

N.R.P. Kumar (2008). Giant Indian Fruit Bat Pteropus<br />

giganteus Brünnich roost in Karnataka, South India: a<br />

case for preservation as a heritage site. Bat Net CCINSA<br />

Newsletter 9(1): 13–15.<br />

Chetty, K.M., K. Sivaji & K.T. Rao (2008). Flowering Plants<br />

<strong>of</strong> Chittoor District, Andhra Pradesh, India. Students Offset<br />

Printers, Tirupati, 490pp.<br />

Ellis, J.L. (2002). Plant diversity niches in the Nallamalais <strong>of</strong><br />

the Eastern Ghats, pp. 1–4. In: Proceeding <strong>of</strong> the National<br />

Seminar Conservation <strong>of</strong> Eastern Ghats. March 24–26,<br />

2002. Environment Protection Training and Research<br />

Institute, Hyderabad.<br />

Fischer, C.E.C. (1932). Flora <strong>of</strong> the Presidency <strong>of</strong> Madras.<br />

[Calamus: 1562–1568]. Vol. III. Adlard & Son, Limited,<br />

W.C. London, 1347-2017pp.<br />

Hirschberger, P. (2011). Global Rattan Trade: Pressure on<br />

Forest Resources, Analysis and Challenges. Ed. E. Duncan.<br />

WWF, Vienna, Austria, 81 pp. [http://awsassets.panda.org/<br />

downloads/global_rattan_trade_report.pdf]. Downloaded<br />

on 08 May <strong>2012</strong>.<br />

Khan, M.S. (1953). Forest Flora <strong>of</strong> Hyderabad State.<br />

Government Press, Hyderabad-Dn, 364pp+i-xix.<br />

Mahamood-Ul-Hassan, M., T.L. Gulraiz, S.A. Rana<br />

& A. Javid (2010). The diet <strong>of</strong> Indian Flying-Foxes<br />

(Pteropus giganteus) in urban habitats <strong>of</strong> Pakistan. Acta<br />

Chiropterologica 12(2): 341–347.<br />

Manohara, T.N., S.N. Ramaswamy & G.R. Shivamurthy<br />

(2007). Calamus - dwindling resources? Current Science<br />

92(3): 290–292.<br />

Marimuthu, G. (1988). The sacred Flying Fox <strong>of</strong> India. Bats<br />

6(2):10–11.<br />

Nathan, P.T., T. Karuppudurai, H. Raghuram & G.<br />

Marimuthu (2009). Bat foraging strategies and pollination<br />

<strong>of</strong> Madhuca latifolia (Sapotaceae) in southern India. Acta<br />

Chiropterologica 11(2): 435–441.<br />

S. Suthari & V.S. Raju<br />

Ramarao, N. & A.N. Henry (1996). The Ethnobotany <strong>of</strong><br />

Eastern Ghats in Andhra Pradesh, India. Botanical Survey<br />

<strong>of</strong> India, Calcutta, 259 pp.<br />

Reddy, C.S., C. Pattanaik, E.N. Murthy & V.S. Raju (2008).<br />

Mapping and monitoring <strong>of</strong> Calamus rotang L. in adjoining<br />

areas <strong>of</strong> Ramappa Lake, Andhra Pradesh using remote<br />

sensing and GIS. Current Science 94(5): 575–577.<br />

Renuka, C. (1995). Reproductive biology <strong>of</strong> rattans. Report<br />

<strong>of</strong> an Expert Consultation held at Los Banos, Phillipines,<br />

8–11 May 1995, pp. 135–139. In: Williams, J.T., I.V.R.<br />

Rao & A.N. Rao (eds.). Genetic Enhancement <strong>of</strong> Bamboo<br />

and Rattan. Appendix 12. Scenario Publications (India),<br />

Noida.<br />

Renuka, C. (2001). Palms <strong>of</strong> India: status, threats and<br />

conservation strategies, pp. 197–209. In: Umashanker,<br />

R., K.N. Ganeshaiah & K.S. Bawa (eds.). Forest Genetic<br />

Resources: Status, Threats and Conservation Strategies.<br />

Oxford & IBH Publishing Co. Pvt. Ltd., Calcutta.<br />

Singaravelan, N., G. Marimuthu & P.A. Racey (2009).<br />

Do fruit bats deserve to be listed as vermin in the Indian<br />

Wildlife (Protection) & amended acts? A critical review.<br />

Oryx 43(4): 608–613.<br />

Sreekumar, V.B. & C. Renuka (2006). Assessment <strong>of</strong> genetic<br />

diversity in Calamus thwaitesii Becc. (Arecaceae) using<br />

RAPD markers. Biochemical Systematics and Ecology 34:<br />

397–405.<br />

Subbarao, G.V. & G.R. Kumari (2008). Flora <strong>of</strong><br />

Visakhapatnam District (Andhra Pradesh)–Vol. 2. Botanical<br />

Survey <strong>of</strong> India, Kolkata, 536pp.<br />

Sunderland, T.C.H. (<strong>2012</strong>). A taxonomic revision <strong>of</strong> the<br />

rattans <strong>of</strong> Africa (Arecaceae: Calamoideae). Phytotaxa 51:<br />

1–76. [http://www.mapress.com/phytotaxa/content/ <strong>2012</strong>/f/<br />

pt00051p076.pdf]. Downloaded on 01 October <strong>2012</strong>.<br />

Suthari, S. & V.S. Raju (2011). Further discovery <strong>of</strong><br />

canebrakes in Warangal District, Andhra Pradesh, p.34.<br />

National Conference on Plants and People, March 29–30,<br />

2011. Kakatiya University, Warangal.<br />

3432<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3426–3432


JoTT No t e 4(15): 3433–3435<br />

Recollection <strong>of</strong> a rare epiphytic orchid<br />

Taeniophyllum filiforme J.J. Sm.<br />

(Orchidaceae) after a lapse <strong>of</strong> 135 years<br />

from South Andaman Islands, India<br />

K. Karthigeyan 1 , R. Sumathi 2 & J. Jayanthi 3<br />

1<br />

Central National Herbarium, Botanical Survey <strong>of</strong> India,<br />

A.J.C.B. Indian Botanic Garden, P.O. Botanic Garden, Howrah,<br />

West Bengal 711103, India<br />

2<br />

Foundation for Revitalisation <strong>of</strong> Local Health Traditions<br />

(FRLHT), 74/2, Jarakabande Kaval, Attur Post (via Yelahanka),<br />

Bengaluru Karnataka 560064, India<br />

3<br />

Botanical Survey <strong>of</strong> India, Western Regional Centre,<br />

7 - Koregaon Road, Pune, Maharashtra 411001, India<br />

Email: 1 karthigeyan.murthy@gmail.com (corresponding author),<br />

2<br />

sumathi.ramamurthy@gmail.com, 3 jayanthi.bsi@gmail.com<br />

The genus Taeniophyllum Blume is a group <strong>of</strong> small<br />

monopodial, leafless epiphytic orchid with a minute<br />

central stem. The generic name denotes the tapewormlike<br />

long roots. The roots are green, contain chlorophyll<br />

that performs photosynthesis and the true leaves are<br />

reduced to tiny scales covering the stem. It belongs to<br />

the Vandeae group <strong>of</strong> the tribe Epidendroideae <strong>of</strong> the<br />

family Orchidaceae (Seidenfaden 1988; Seidenfaden&<br />

Wood 1992; Comber 2001; Mabberley 2008). So far<br />

170 species have been reported which are distributed<br />

from tropical Africa, India and Sri Lanka, East and<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: N.P. Balakrishnan<br />

Manuscript details:<br />

Ms # o2851<br />

Received 29 June 2011<br />

Final received 25 July <strong>2012</strong><br />

Finally accepted 23 October <strong>2012</strong><br />

Citation: Karthigeyan, K., R. Sumathi & J. Jayanthi (<strong>2012</strong>). Recollection<br />

<strong>of</strong> a rare epiphytic orchid Taeniophyllum filiforme J.J. Sm. (Orchidaceae)<br />

after a lapse <strong>of</strong> 135 years from South Andaman Islands, India. <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3433–3435.<br />

Copyright: © K. Karthigeyan, R. Sumathi & J. Jayanthi <strong>2012</strong>. Creative<br />

Commons Attribution 3.0 Unported License. JoTT allows unrestricted use<br />

<strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes, reproduction and<br />

distribution by providing adequate credit to the authors and the source <strong>of</strong><br />

publication.<br />

Acknowledgements: The authors are thankful to Dr. M. Sanjappa, Ex-<br />

Director, Dr. H.J. Chowdhery, Addl. Director (Retd.) and Dr. P.G. Diwakar,<br />

Joint Director, Botanical Survey <strong>of</strong> India for encouragement and facilities.<br />

They also thank Dr. D. Narasimhan and Dr. C. Livingstone, Madras Christian<br />

College, Tambaram for encouragement.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Southeast Asia, to Australia and<br />

the Pacific Islands (Comber 1990;<br />

Mabberley 2008). Nine species are<br />

reported from India including four<br />

endemics (Kumar & Manilal 1994). Three species are<br />

known to occur in the Andaman Islands, namely, the<br />

endemic Taeniophyllum andamanicum N.P. Balakr. &<br />

Bhargava, T. filiforme J. J. Sm. and T. insulare Seidenf.<br />

(Rao 1986; Mathew 1998; Pandey & Diwakar 2008).<br />

The occurrence <strong>of</strong> Taeniophyllum filiforme in the<br />

Andaman Islands was first known when Dr. Lars<br />

Johnson identified this species from the collection<br />

made by Kurz from the South Andamans in 1867<br />

deposited in Kew. After that there was no record<br />

<strong>of</strong> this extremely rare species from the Andaman<br />

Islands and the occurrence <strong>of</strong> this interesting species<br />

remained a mystery. While inventorising the floristic<br />

diversity <strong>of</strong> Rutland Island during the year 2002 this<br />

flimsy orchid was found growing on the branches <strong>of</strong><br />

Pterocarpus dalbergioides Roxb. ex DC. and only<br />

a few individuals were observed. On scrutiny <strong>of</strong><br />

literature it was identified as Taeniophyllum filiforme,<br />

an extremely rare orchid in the inland forests <strong>of</strong> the<br />

Andaman Islands. The present collection <strong>of</strong> this tiny<br />

orchid from the tropical forests <strong>of</strong> South Andaman is<br />

a recollection after a lapse <strong>of</strong> 135 years. Since this<br />

orchid is leafless, only the green roots appear on the<br />

bark <strong>of</strong> trees, the pale yellow flowers are very short<br />

lived and this could be one <strong>of</strong> the reasons for being<br />

unnoticed over many years. Taeniophyllum filiforme<br />

is also listed in the CITES Appendix II by the World<br />

Conservation Monitoring Centre (UNEP WCMC<br />

2003). Detailed description and illustration along with<br />

notes on its ecology and distribution are provided for<br />

easy identification <strong>of</strong> this rare orchid.<br />

Taeniophyllum Blume, Bijdr. 355. 1825; Hook.f.,<br />

Flora British India 6: 76. 1890. Lectotype: T. obtusum<br />

Blume.<br />

Taeniophyllum filiforme J.J. Sm. Bull. Inst. Bot.<br />

Buitenzorg 7: 4. 1900; Seidenf. in Opera Bot. 95:<br />

21. 1988; J.B. Comber in Orchids Java 360. 1990;<br />

Seidenf. & J.J. Wood in Orchids Penin. Malaysia &<br />

Singapore 579. 1992; J.B. Comber in Orchids Sumatra<br />

980. 2001. T. macrorrhizum Ridl. in Fl. Malay Penin.<br />

4: 176. 1924. (Fig. 1; Images 1&2).<br />

Epiphytes. Roots wiry, more or less flat, green.<br />

Inflorescence arising from the base, 1–2 flowered,<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3433–3435 3433


Taeniophyllum filiforme from Andaman<br />

K. Karthigeyan et al.<br />

© K. Karthigeyan<br />

Image 1. Taeniophyllum filiforme habit<br />

© K. Karthigeyan<br />

Figure 1. Taeniophyllum filiforme J.J. Sm.<br />

a - Habit; b - Flower<br />

Image 2. Taeniophyllum filiforme close up view <strong>of</strong> flower<br />

ca. 5.5cm long, slender. Bracts ca. 1.5mm long,<br />

membranous. Flowers pale yellow, ca. 1x0.25 cm.<br />

Pedicel with ovary ca. 4x1 mm. Dorsal sepal narrowly<br />

oblong, ca. 4x1 mm, obtuse at apex. Lateral sepals<br />

narrowly oblong, ca. 4x1.5 mm, obtuse at apex. Petals<br />

oblong - lanceolate, ca. 4.5x1.5 mm, obtuse at apex.<br />

Lip fleshy, ca. 3.8 x 2.5 mm, pale yellow, sheathing the<br />

column; spur club - shaped, c. 4.5 x 1.8 mm. Column<br />

ca. 1mm long, with a long upwardly facing beak on<br />

the operculum.<br />

Specimen examined: 28.vi.2002, inland evergreen<br />

forests, Rutland Island, South Andamans, Andaman &<br />

Nicobar Islands, India, coll. K. Karthigeyan, 6086 Port<br />

Blair herbarium (PBL) (Image 3).<br />

Flowering & Fruiting: June–August.<br />

Ecology: Extremely rare; in the inland forests<br />

<strong>of</strong> Rutland Island growing on the tree trunks <strong>of</strong><br />

Pterocarpus dalbergioides Roxb. ex DC.<br />

Distribution: India (Andaman Islands); Peninsular<br />

Malaysia, Thailand and Indonesia.<br />

Note: This species can easily escape from sight<br />

owing to its small leafless habit, green roots that grow<br />

on the tree trunks either near the forest floor or among<br />

the dense foliage <strong>of</strong> smaller twigs. This species is<br />

distributed in Peninsular Malaysia, Thailand and<br />

Indonesia. In the Andaman Islands only very few<br />

individuals were located from a single spot.<br />

REFERENCES<br />

Comber, J.B. (1990). Orchids <strong>of</strong> Java. Royal Botanic Gardens,<br />

Kew, 360pp.<br />

Comber, J.B. (2001). Orchids <strong>of</strong> Sumatra. Royal Botanic<br />

Gardens, Kew, 980pp.<br />

Kumar, C.S. & K.S. Manilal (1994). A Catalogue <strong>of</strong> Indian<br />

Orchids. Bishen Singh Mahendra Pal Singh, Dehra Dun,<br />

85pp.<br />

Mabberley, D.J. (2008). Mabberley’s Plant-book: A Portable<br />

Dictionary <strong>of</strong> Plants: Utilizing Kubitzki’s The Families and<br />

Genera <strong>of</strong> Vascular Plants (1990) and Current Botanical<br />

3434<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3433–3435


Taeniophyllum filiforme from Andaman<br />

K. Karthigeyan et al.<br />

Literature, Arranged According to The Principles <strong>of</strong><br />

Molecular Systematics - Edition 3. Cambridge University<br />

Press, xviii+1021pp.<br />

Mathew, S.P. (1998). A supplementary report on the flora and<br />

vegetation <strong>of</strong> the Bay Islands, India. <strong>Journal</strong> <strong>of</strong> Economic<br />

and Taxonomic Botany 22(2): 249–272.<br />

Pandey, R.P. & P.G. Diwakar (2008). An integrated check-list<br />

Flora <strong>of</strong> Andaman and Nicobar Islands, India. <strong>Journal</strong> <strong>of</strong><br />

Economic and Taxonomic Botany 32: 403–499.<br />

Rao, M.K.V. (1986). A preliminary report on the angiosperms<br />

<strong>of</strong> Andaman and Nicobar Islands. <strong>Journal</strong> <strong>of</strong> Economic and<br />

Taxonomic Botany 8: 107–184.<br />

Seidenfaden, G. (1988). Orchid genera in Thailand. XIV. Fifty<br />

- Nine Vandoid genera. Opera Botanica 95: 1–398.<br />

Seidenfaden, G. & J.J. Wood (1992). The Orchids <strong>of</strong><br />

Peninsular Malaysia and Singapore. Olsen & Olsen,<br />

Fredensborg, 579pp.<br />

UNEP WCMC (2003). Checklist <strong>of</strong> CITES Species. UNEP<br />

World Conservation Monitoring Centre, Cambridge, 1–<br />

339pp.<br />

Image 3. Herbarium <strong>of</strong> Taeniophyllum filiforme<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3433–3435<br />

3435


JoTT No t e 4(15): 3436–3442<br />

Validation and documentation <strong>of</strong> rare<br />

endemic and threatened (RET) plants<br />

from Nilgiri, Kanuvai and Madukkarai<br />

forests <strong>of</strong> southern Western Ghats,<br />

India<br />

K.M. Prabhu Kumar 1 , V. Sreeraj 2 , Binu Thomas 3 ,<br />

K.M. Manudev 4 & A. Rajendran 5<br />

1,2,3,5<br />

Department <strong>of</strong> Botany, Bharathiar University, Tamil Nadu<br />

641046, India<br />

4<br />

Department <strong>of</strong> Botany, St. Joseph’s College Devagiri, Kozhikode,<br />

Kerala 673008, India<br />

Email: 1 prabhumkrishna@gmail.com, 2 sreerajlakkidi@gmail.com,<br />

3<br />

binuthomasct@gmail.com (corresponding author),<br />

4<br />

manudevkmadhavan@gmail.com, 5 drarjendra@gmail.com,<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: N.P. Balakrishnan<br />

Manuscript details:<br />

Ms # o3145<br />

Received 31 March <strong>2012</strong><br />

Final received 04 September <strong>2012</strong><br />

Finally accepted 29 October <strong>2012</strong><br />

OPEN ACCESS | FREE DOWNLOAD<br />

Western Ghats<br />

Special Series<br />

According to Nayar (1996) there are 60 endemic<br />

genera and 2,015 species <strong>of</strong> flowering plants endemic<br />

to peninsular India. The Western Ghats possess a high<br />

percentage <strong>of</strong> endemic species, about 48% <strong>of</strong> 4000<br />

species occur in this region (Gopalan & Henry 2000).<br />

The Western Ghats are on the brink <strong>of</strong> endemic plant<br />

Citation: Kumar, K.M.P., V. Sreeraj, B. Thomas, K.M. Manudev & A.<br />

Rajendran (<strong>2012</strong>). Validation and documentation <strong>of</strong> rare endemic and<br />

threatened (RET) plants from Nilgiri, Kanuvai and Madukkarai forests<br />

<strong>of</strong> southern Western Ghats, India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15):<br />

3436–3442.<br />

Copyright: © K.M. Prabhu Kumar, V. Sreeraj, Binu Thomas, K.M. Manudev<br />

& A. Rajendran <strong>2012</strong>. Creative Commons Attribution 3.0 Unported License.<br />

JoTT allows unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it<br />

purposes, reproduction and distribution by providing adequate credit to the<br />

authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The authors are grately thankful to Vanya Orr<br />

and Siva Kumar, Earth Trust Nilgiris, Nilgiri and Godwin Vasanth Bosco,<br />

Organizing Secretary <strong>of</strong> NLRD Programme, Nilgiri Biosphere Reserve,<br />

Nilgiri for giving facilities for this work. Thanks are also due to Dr. M. Sabu,<br />

Pr<strong>of</strong>essor, Department <strong>of</strong> Botany, Calicut University for various helps and Mr.<br />

A.J. Robi, Research Scholar, KFRI, Peechi for the identification <strong>of</strong> Lauraceae<br />

species. We are also thankful to Mr. Mahadevan, Ms. Jayanthi, Ms. Sasi and<br />

Mr. Aravind, research scholars, Department <strong>of</strong> Botany, Bharathiar University<br />

for assistance during the field visit.<br />

collapse, about 1500 species have a<br />

highly fragmented population and<br />

at least 50 endemic species have<br />

not be relocated after repeated<br />

surveys (Nayar 1998).<br />

The current paper is an attempt to study the<br />

conservation assessment <strong>of</strong> rare, endemic and<br />

threatened species (RET) <strong>of</strong> the southern Western<br />

Ghats. As part <strong>of</strong> the Nilgiri Landscape Restoration<br />

Programme conducted by the British Council<br />

International Climate Champions in association with<br />

the Tamil Nadu Forest Department, (Nilgiris North &<br />

South Divisions), British Council India, Earth Trust<br />

Nilgiris, Edhkwelynawd Botanical Refuge, Nilgiris;<br />

the first author visited and validated the RET plants <strong>of</strong><br />

Kolikorai, Melcoupe, Ammagal, Mukurthy National<br />

Park (MNP) and Doddabetta forests <strong>of</strong> the Nilgiri<br />

Biosphere Reserve. After that a detailed field survey<br />

was carried out by the authors in Kolikorai, Melcoupe,<br />

Kil Kothagiri, Longwood Shola and Kothagiri forests<br />

<strong>of</strong> Nilgiris with the help <strong>of</strong> Earth Trust Nilgiris, and<br />

many plants were identified and documented. As a<br />

part <strong>of</strong> this we also studied the status <strong>of</strong> RET plants in<br />

the Madukkarai Hills and Kanuvai Hills <strong>of</strong> Coimbatore<br />

District and recorded the details systematically.<br />

The Nilgiri Biosphere Reserve (NBR) is a part <strong>of</strong><br />

SWG and a place <strong>of</strong> incredible diversity in landscape<br />

and life. It lies between 10 0 45’–12 0 N & 76 0 –77°15’E<br />

with a total area <strong>of</strong> 5520km 2 spread across the three<br />

states <strong>of</strong> Karnataka, Kerala and Tamil Nadu. Altitude<br />

within the NBR varies from 250–2670 m, and the<br />

reserve encompasses a diversity <strong>of</strong> vegetation types,<br />

ranging from tropical evergreen to thorny scrub<br />

(Chandrasekhara 2005). NBR is one <strong>of</strong> the hot spots<br />

<strong>of</strong> the world with many rare, endemic and threatened<br />

plants (Fyson 1932; Nayar 1996).<br />

Madukkarai is located at 10.9 0 N & 76.97 0 E<br />

along the hill sides <strong>of</strong> the southern Western Ghats <strong>of</strong><br />

Coimbatore, Tamil Nadu and also a part <strong>of</strong> Nilgiri<br />

Biosphere Reserve. The name “Madukkarai” originated<br />

from the colloquial use <strong>of</strong> the words “Mathil” (means<br />

great wall in Tamil) + “Karai” (means shore in Tamil).<br />

The publication <strong>of</strong> this article is supported by the Critical Ecosystem<br />

Partnership Fund (CEPF), a joint initiative <strong>of</strong> l’Agence Française<br />

de Développement, Conservation International, the European<br />

Commission, the Global Environment Facility, the Government <strong>of</strong><br />

Japan, the MacArthur Foundation and the World Bank.<br />

3436<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442


RET plants <strong>of</strong> southern Western Ghats<br />

It has one <strong>of</strong> the oldest cement plants in India. The<br />

temperature ranges from 47.5 0 C and 16 0 C respectively<br />

(Jayanthi et al. 2011). Kanuvai Hills are located near<br />

Maruthamalai forests and the vegetation types are<br />

tropical dry deciduous forests and thorn shrub forests.<br />

Result and Discussion: The present study is an<br />

enumeration <strong>of</strong> 51 selected endemic species belonging<br />

to 39 genera, 28 families and two subfamilies<br />

documented from different forests in Tamil Nadu.<br />

Among them Berberis nilghiriensis Ahrendt is one<br />

<strong>of</strong> the Critically Endangered (B1+2c) species and<br />

collected by the authors from Ammagal forests <strong>of</strong> NBR.<br />

Many rare species were also collected from the study<br />

area including Crotalaria scabra Gamble, Murdannia<br />

lanuginosa (Wall. ex Clarke) Brueck. (Nayar & Sastry<br />

1990), Smilax wightii A. DC., Elaeocarpus recurvatus<br />

Corner (Nayar & Sastry 1990), Litsea wightiana<br />

(Nees) Hook. f. var. tomentosa (Meissner) Gamble<br />

and Dalbergia congesta Graham ex Wight (Sasidharan<br />

2006).<br />

Lauraceae and Fabaceae are the dominant<br />

families having eight species each, Acanthaceae and<br />

Apocynaceae with three species, Berberidaceae,<br />

Gentianaceae, Myrtaceae and Scrophulariaceae with<br />

two species and all the other remaining families having<br />

one species each. The correct botanical identity,<br />

common names (if available), family, habit, habitat,<br />

locality and endemism <strong>of</strong> documented species are<br />

given in the table with colour photos (Table 1, Images<br />

1–3).<br />

Conclusion: The Nilgiri Biosphere Reserve is one<br />

<strong>of</strong> the most diverse floristic areas <strong>of</strong> India with a mixture<br />

<strong>of</strong> both exotic and native species. From the present<br />

study the authors properly validated and documented<br />

many RET plants from NBR, Madukkarai and Kanuvai<br />

Hills <strong>of</strong> Coimbatore District, Tamil Nadu. Some <strong>of</strong> the<br />

threatened factors such as over-exploitation <strong>of</strong> natural<br />

resources and other anthropogenic activities adversely<br />

affect the existing ecosystem and it may lead to the<br />

rarity <strong>of</strong> many species in future. There is an urgent<br />

need for developing pragmatic conservation strategies<br />

for endemic plants in the southern Western Ghats,<br />

which may lead to their effective protection.<br />

References<br />

K.M.P. Kumar et al.<br />

Chandrashekara, U.M., P.K. Muraleedharan & V.<br />

Sibichan (2005). Anthropogenic pressure on structure and<br />

composition <strong>of</strong> a shola forest in Kerala, India. <strong>Journal</strong> <strong>of</strong><br />

Mountain Science 3(1): 58–70.<br />

Fyson, P.F. (1932). The Flora <strong>of</strong> the South Indian Hill<br />

Stations—Vols. 1 & 2. Madras.<br />

Gopalan, R. & A.N. Henry (2000). Endemic Plants <strong>of</strong> India.<br />

Bishen Singh Mahendra Pal Singh, Dehra Dun.<br />

Jayanthi, P., A. Rajendran, B. Thomas, V. Aravindhan &<br />

R. Sivalingam (2011). Biodiversity <strong>of</strong> Lithophytes in<br />

Madukkarai Hills <strong>of</strong> Southern Western Ghats <strong>of</strong> Coimbatore<br />

District, Tamil Nadu, India. International <strong>Journal</strong> <strong>of</strong><br />

Biological Technology 2(2): 76–82.<br />

Kumar, K.M.P., S. George, S. Sreedhar & I. Balachandran<br />

(2011). Caralluma diffusa (Wight) N.E.Br. (Apocynaceae)<br />

- a new distribution record for Kerala from Chinnar Wild<br />

Life Sanctuary, India. The Indian Forester (in press).<br />

Nampy, S., K.M. Manudev & A.K. Pradeep (2011). Two<br />

new species <strong>of</strong> Eriocaulon (Eriocaulaceae) from India.<br />

Edinburgh <strong>Journal</strong> <strong>of</strong> Botany 68(2): 257–263.<br />

Nayar, M.P. (1996). “Hot Spots” <strong>of</strong> Endemic Plants <strong>of</strong> India,<br />

Nepal and Bhutan. Tropical Botanic Garden and Research<br />

Institute, Palode, Thiruvananthapuram.<br />

Nayar, M.P. (1998). Impending endemic plant collapse in the<br />

Western Ghats. Biodiversity, India. Newsletter issues 3–7.<br />

Nayar, M.P. & A.R.K. Sastry (1990). Smilax wightii A. DC.<br />

In: Red Data Book <strong>of</strong> Indian Plants. Botanical Survey <strong>of</strong><br />

India 1: 352.<br />

Nayar, M.P. & A.R.K. Sastry (1990). Crotalaria scabra<br />

Gamble. In: Red Data Book <strong>of</strong> Indian Plants. Botanical<br />

Survey <strong>of</strong> India, 2: 117.<br />

Nayar, M.P. & A.R.K. Sastry (1990). Murdannia lanuginosa<br />

(Wall. ex Clarke) Brueck. In: Red Data Book <strong>of</strong> Indian<br />

Plants. Botanical Survey <strong>of</strong> India 2: 99.<br />

Nayar, M.P. & A.R.K. Sastry (1990). Elaeocarpus recurvatus<br />

Corner.: Red Data Book <strong>of</strong> Indian Plants. Botanical Survey<br />

<strong>of</strong> India, 3: 115.<br />

Ramachandran, V.S., S. Joseph, H.A. John & C. S<strong>of</strong>iya<br />

(2011). Caralluma bicolor sp. nov. (Apocynaceae,<br />

Asclepiadoideae) from India. Nordic <strong>Journal</strong> <strong>of</strong> Botany 29:<br />

447–450.<br />

Sasidharan, N. (2006). A Database for Flowering Plants <strong>of</strong><br />

Kerala. Kerala Forest Research Institute, Peechi, Thrissur,<br />

Kerala.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442<br />

3437


RET plants <strong>of</strong> southern Western Ghats<br />

K.M.P. Kumar et al.<br />

Table 1. List <strong>of</strong> species documented in the study area<br />

Sno Botanical Name/Local Name Family Habit Habitat Locality Status and Distribution<br />

1<br />

2<br />

Anaphalis neelgerryana (Sch.-<br />

Bip. ex DC.) DC.<br />

Arisaema leschenaultii Blume<br />

(Pambucholam,<br />

Pambumchena)<br />

Asteraceae Herb Dry exposed slopes MNP Endemic to SWG<br />

Araceae<br />

Herb<br />

Margins <strong>of</strong> ever- green<br />

forests, sholas and<br />

grasslands<br />

Kothagiri, Kil<br />

Kothagiri<br />

Endemic to SWG<br />

3 Asparagus fysonii J.F. Macbr. Liliaceae Shrub Grass lands Madukkarai Rare, Endemic to SWG<br />

4 Barleria acuminata Wight Acanthaceae Shrub Deciduous forests<br />

5 Barleria buxifolia L. Acanthaceae Shrub Wasteplaces<br />

6 Berberis nilghiriensis Ahrendt Berberidaceae Shrub<br />

Evergreen and shola<br />

forests<br />

Kanuvai<br />

Hills<br />

Kanuvai<br />

Hills<br />

Ammagal<br />

Endemic to Peninsular<br />

India<br />

Endemic to Peninsular<br />

India<br />

Critically Endangered,<br />

endemic to Tamil Nadu<br />

7 Canscora pauciflora Dalz. Gentianaceae Herb Evergreen forests Kolikorai Endemic to SWG<br />

8 Canscora perfoliata Lam. Gentianaceae Herb<br />

9<br />

10<br />

11<br />

12<br />

Caralluma diffusa (Wight.)<br />

N.E. Br.<br />

Caralluma indica (Wight &<br />

Arn.) N.E.Br.<br />

Caralluma bicolor VS. Ramach.<br />

et al.<br />

Cinnamomum wightii Meisn.<br />

(Kattukaruvai)<br />

Apocynaceae -<br />

Asclepiadoideae<br />

Apocynaceae -<br />

Asclepiadoideae<br />

Apocynaceae<br />

Herb<br />

Wet areas in moist<br />

deciduous forests<br />

among grasses<br />

Scrub jungles<br />

Ammagal<br />

Madukkarai,<br />

Kanuvai Hills<br />

Endemic to SWG<br />

Near <strong>Threatened</strong>,<br />

endemic to SWG<br />

Herb Scrub jungles Madukkarai Rare, endemic to SWG<br />

Herb<br />

Dry deciduous forests<br />

and Scrub jungles<br />

Kanuvai<br />

Hills<br />

Endangered, endemic<br />

to Tamil Nadu<br />

Lauraceae Tree Shola forests Doddabetta Rare, endemic to SWG<br />

13 Commelina wightii Raiz. Commelinaceae Herb In the plains Kothagiri<br />

14 Cordia wallichii G. Don Boraginaceae Tree Moist deciduous forests Madukkarai<br />

15<br />

16<br />

Crotalaria heyneana Graham<br />

ex Wight & Arn.<br />

Crotalaria pusilla Heyne ex<br />

Roth<br />

<strong>Threatened</strong>, endemic<br />

SWG<br />

Endemic to peninsular<br />

India<br />

Fabaceae Shrub Semi-evergreen forests Kothagiri Endemic to SWG<br />

Fabaceae Herb Semi-evergreen forests Kil Kothagiri<br />

Endemic to peninsular<br />

India<br />

17 Crotalaria ramosissima Roxb. Fabaceae Herb Dry deciduous forests Kanuvai Hills Rare, Endemic to SWG<br />

18 Crotalaria scabra Gamble Fabaceae Shrub Grasslands Kil Kothagiri Rare, Endemic to SWG<br />

19 Cryptocarya stocksii Meisn. Lauraceae Tree<br />

Evergreen and shola<br />

forests<br />

Longwood<br />

Shola<br />

Rare, Endemic to SWG<br />

20 Curcuma neilgherrensis Wight Zingiberaceae Herb Grasslands MNP Endemic to SWG<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

Dalbergia congesta Graham<br />

ex Wight.<br />

Elaeocarpus recurvatus<br />

Corner. (Bhadraksham)<br />

Eriocaulon pykarense Nampy<br />

& Manudev<br />

Ficus laevis Blume var.<br />

macrocarpa (Miq.) Corner<br />

Helixanthera wallichiana<br />

(Schult.) Danser<br />

Hydnocarpus macrocarpa<br />

(Bedd.) Warb. (Malamarotti)<br />

Fabaceae<br />

Climbing<br />

shrub<br />

Elaeocarpaceae Tree Semi-evergreen forests MNP<br />

Eriocaulaceae<br />

Moraceae<br />

Loranthaceae<br />

Herb<br />

Tree<br />

Shrub<br />

Semi-evergreen forests Avalanche Rare, Endemic to SWG<br />

Marshy places in<br />

grasslands.<br />

Evergreen and shola<br />

forests<br />

Evergreen forests, also<br />

in the plains<br />

Kil Kothagiri<br />

Long Wood<br />

Shola<br />

MNP<br />

Flacourtiaceae Tree Evergreen forests Avalanche<br />

Vulnerable, endemic<br />

to SWG<br />

Endangered, endemic<br />

to Tamil Nadu<br />

Rare, endemic to SWG<br />

Rare, endemic to WG<br />

Vulnerable, endemic<br />

to SWG<br />

27 Indig<strong>of</strong>era trita L.f. var. scabra Fabaceae Herb Dry deciduous forests Madukkarai Rare, endemic to SWG<br />

28<br />

29<br />

Indig<strong>of</strong>era uniflora Buch.-Ham.<br />

ex Roxb.<br />

Justicia nilgherrensis (Nees)<br />

Wall.<br />

Fabaceae<br />

Herb<br />

Deciduous forests and<br />

denuded hillocks<br />

Madukkarai<br />

Endemic to peninsular<br />

India<br />

Acanthaceae Shrub Grasslands Kothagiri Endemic to SWG<br />

30 Leucas lanceifolia Desf. Lamiaceae Shrub Margins <strong>of</strong> shola forests MNP<br />

31<br />

Litsea quinqueflora (Dennst.)<br />

Suresh<br />

Endemic to peninsular<br />

India<br />

Lauraceae Tree Evergreen forests Kil Kothagiri Rare, endemic to SWG<br />

3438<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442


RET plants <strong>of</strong> southern Western Ghats<br />

K.M.P. Kumar et al.<br />

Sno Botanical Name/Local Name Family Habit Habitat Locality Status and Distribution<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

Litsea floribunda (Blume)<br />

Gamble (Pattuthali)<br />

Litsea wightiana (Nees) Hook.<br />

f. var. tomentosa (Meisn.)<br />

Gamble<br />

Litsea wightiana (Nees) Hook.<br />

f. var. wightiana (Pattuthali,<br />

Manjakudala)<br />

Mahonia leschenaultii (Wall.<br />

ex Wight & Arn.) Takeda ex<br />

Dunn (Charayapazham, Mullu<br />

Kadambu)<br />

Memecylon randerianum SM &<br />

MR Almeida<br />

(Kaikkathetti, Koovachekki,<br />

Kashara, Kazhavu)<br />

Moringa concanensis Nimmo<br />

ex Gibs. (Kattu Moringa)<br />

Murdannia lanuginosa (Wall.<br />

ex Clarke) Brueck.<br />

Neolitsea scrobiculata<br />

(Meisn.) Gamble (Mulakunari,<br />

Shanthamaram)<br />

Passiflora leschenaultii DC.<br />

(Seemavellarai)<br />

Phoebe wightii Meisn.<br />

(Chudala, Mulakunari)<br />

Lauraceae<br />

Tree<br />

Evergreen and semievergreen<br />

forests<br />

Lauraceae Tree evergreen forests<br />

Ammagal<br />

Ammagal,<br />

Kil Kothagiri<br />

Rare, endemic to SWG<br />

Rare, endemic to SWG<br />

Lauraceae Tree Shola forests Kil Kothagiri Endemic to SWG<br />

Berberidaceae Tree Evergreen forests MNP Endemic to SWG<br />

Melastomataceae<br />

Moringaceae<br />

Shrub<br />

Tree<br />

Evergreen and semievergreen<br />

forests, and<br />

also in sacred groves<br />

Scrub jungles and dry<br />

deciduous forests<br />

Kil Kothagiri<br />

Madukkarai<br />

Commelinaceae Herb Grass lands Kothagiri<br />

Lauraceae<br />

Tree<br />

Evergreen and shola<br />

forests<br />

Ammagal<br />

Passifloraceae Climber Shola forests Doddabetta<br />

Lauraceae Tree Evergreen forests<br />

42 Premna glaberrima Wight Verbenaceae Shrub<br />

43<br />

44<br />

45<br />

46<br />

Pterolobium hexapetalum<br />

(Roth.) Sant & Wagh. (Endam)<br />

Rhododendron arboretum J. E.<br />

Smith ssp. nilagiricum (Zenk.)<br />

Tagg. (Alanchi)<br />

Rubus glomeratus Blume.<br />

(Kattu munthiri)<br />

Smilax wightii A. DC.<br />

(Karivilanthi, Chooramullu)<br />

Fabaceae -<br />

Caesalpinoideae<br />

Semi-evergreen and<br />

evergreen forests<br />

Longwood<br />

Shola<br />

Kothagiri<br />

Climber Dry deciduous forests Madukkarai<br />

Endemic to SWG<br />

Rare, endemic to SWG<br />

Rare, endemic to<br />

peninsular India<br />

Endemic to SWG<br />

Endemic to peninsular<br />

India<br />

Endemic to peninsular<br />

India<br />

Rare, endemic to SWG<br />

Endemic to peninsular<br />

India<br />

Ericaceae Tree Shola forests Avalanche Endemic to SWG<br />

Rosaceae<br />

Smilacaceae<br />

Scandent<br />

shrub<br />

Climbing<br />

shrub<br />

Evergreen forests and<br />

grasslands<br />

Moist deciduous and<br />

shola forests<br />

47 Striga densiflora Benth. Scrophulariaceae Herb Dry deciduous forests Kanuvai<br />

48<br />

49<br />

Syzygium laetum (Buch.-Ham.)<br />

Gandhi (Kollinjaval)<br />

Syzygium mundagam (Bourd.)<br />

Chithra (kattuchambai,<br />

Mundagam)<br />

MNP<br />

MNP<br />

Endemic to peninsular<br />

India<br />

Rare, endemic to SWG<br />

Endemic to peninsular<br />

India<br />

Myrtaceae Tree Evergreen forests Avalanche Endemic to SWG<br />

Myrtaceae Tree Evergreen forests Doddabetta Rare, endemic to SWG<br />

50 Torenia hirsuta Willd. Scrophulariaceae Herb Marshy areas MNP Endemic to SWG<br />

51<br />

Vaccinium neilgherrense<br />

Wight. (Manalamaram)<br />

Vacciniaceae<br />

Tree<br />

MNP - Mukkurthi National Park; WG - Western Ghats; SWG - southern Western Ghats<br />

River banks <strong>of</strong><br />

Evergreen forests<br />

MNP<br />

Rare, endemic to SWG<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442<br />

3439


RET plants <strong>of</strong> southern Western Ghats<br />

K.M.P. Kumar et al.<br />

a b c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

i<br />

j<br />

Image 1. A & B - Arisaema leschenaultii Blume; C - Barleria acuminata Nees; D - Barleria buxifolia L.; E - Berberis<br />

nilghiriensis Aherendt; F - Canscora perfoliata Lam.; G - Caralluma diffusa (Wight) N.E. Br.; H - Caralluma diffusa (fruit); I -<br />

Caralluma indica (Wight & Arn.) N.E.Br.; J - Commelina wightii Raiz.<br />

3440<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442


RET plants <strong>of</strong> southern Western Ghats<br />

K.M.P. Kumar et al.<br />

a<br />

b<br />

d<br />

c<br />

e<br />

f<br />

g<br />

h<br />

i<br />

j<br />

Image 2. A - Cordia wallichii G. Don.; B - Crotalaria heyneana Graham ex Wight & Arn.; C - Crotalaria heyneana (fruit);<br />

D - Crotalaria pusilla Heyne ex Roth; E - Crotalaria pusilla (fruit); F - Curcuma neilgherrensis Wight; G - Helixanthera<br />

wallichiana (Schult.) Danser; H - Indig<strong>of</strong>era trita L.f. var. scabra.; I - Justicia nilgherrensis (Nees) Wall.; J - Leucas<br />

lanceifolia desf.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442<br />

3441


RET plants <strong>of</strong> southern Western Ghats<br />

K.M.P. Kumar et al.<br />

a<br />

b<br />

c<br />

d<br />

e<br />

f<br />

g<br />

h<br />

Image 3. A - Litsea wightiana (Nees) Hook. f. var. tomentosa (Meisn.) Gamble; B - Mahonia leschenaultii (Wall. ex Wight &<br />

Arn.) Takeda ex Dunn; C - Rhododendron arboretum J.E. Smith spp. nilagiricum (Zenk.) Tagg.; D & E - Rubus glomeratus<br />

Blume; F - Striga densiflora Benth.; G - Syzygium laetum (Buch.-Ham.) Gandhi; H - Torenia hirsuta Willd.<br />

3442<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3436–3442


JoTT No t e 4(15): 3443–3446<br />

Ethnobotanical value <strong>of</strong> dry,<br />

fallen ovaries <strong>of</strong> Bombax ceiba L.<br />

(Bombacaceae: Malvales)<br />

S. Gopakumar 1 & R. Yesoda Bai 2<br />

1<br />

Department <strong>of</strong> Forest Management and Utilisation, College <strong>of</strong><br />

Forestry, Kerala Agricultural University, Thrissur District, Kerala<br />

680656, India<br />

2<br />

Indian Forest Service, Indira Gandhi National Forest Academy,<br />

Dehradun, Uttarakhand 248006, India<br />

Email: 1 gopankau@gmail.com (corresponding author),<br />

2<br />

yesodabai181@gmail.com<br />

Indigenous people and their knowledge about<br />

nature and natural products have foremost importance<br />

in conservation efforts (Anderson & Putz 2002;<br />

Ramakrishnan et al. 2005; Rist et al. 2008). Every<br />

community, especially ethnic ones, has strong<br />

linkages with plants and the possibility <strong>of</strong> uncovering<br />

new information from these relationships still remain<br />

enormous. Ethnobotany which explores human-plant<br />

interactions (Pei et al. 2009) is now more important<br />

than ever before. Numerous non-timber forest products<br />

(NTFPs) have ethnobotanical values on account <strong>of</strong><br />

their medicinal, food and cultural significance. New<br />

uses connected with NTFPs are also being reported and<br />

getting documented for posterity. NTFPs constitute<br />

an important economic and natural resource, and are<br />

used for both family consumption and commercial<br />

trade (Kim et al. 2008). They also meet social needs<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: Kannan C.S. Warrier<br />

(Griffiths et al. 2003) and contribute<br />

significantly to the livelihood<br />

<strong>of</strong> rural residents (Angelsen &<br />

Wunder 2003; Sunderlin et al.<br />

2005). About 80% <strong>of</strong> the population <strong>of</strong> developing<br />

countries use NTFPs to meet some <strong>of</strong> their health and<br />

nutritional needs (Beer & McDermott 1996). In many<br />

<strong>of</strong> the thickly populated tropical regions, poor people<br />

still collect a wide range <strong>of</strong> forest products to sustain<br />

and supplement their livelihoods and escape hunger<br />

and poverty. However, information on such collection<br />

efforts and utilization aspects remains unaccounted<br />

largely due to the scattered nature <strong>of</strong> such efforts.<br />

Bombax ceiba and its ethnobotanical significance<br />

Bombax ceiba L., (Bombacaceae: Malvales), a<br />

tall deciduous tree with distinctive woody thorns<br />

on the trunk and branches (Brock 2001) is found in<br />

India, Australia (Liddle et al. 1994), Papua New<br />

Guinea, South-east Asia, China and the Indonesian<br />

Archipelago (Wightman & Andrew 1989). This very<br />

common tree produces large crimson coloured flowers<br />

(Image 1) which are ornithophilous (Bhattacharya<br />

& Mandal 2000). The flowers have a hard perianth<br />

with stiff filaments and a well protected ovary. The<br />

large, showy flowers usually appear when the trees are<br />

leafless.<br />

There are many recorded ethnobotanical uses<br />

<strong>of</strong> B. ceiba. The Garo ethnic community <strong>of</strong> Tangail<br />

District <strong>of</strong> Bangladesh not only worships it, but also<br />

uses the paste <strong>of</strong> its bark to heal wounds. They also<br />

© S. Gopakumar<br />

Manuscript details:<br />

Ms # o2936<br />

Received 03 September 2011<br />

Final received 12 October <strong>2012</strong><br />

Finally accepted 14 October <strong>2012</strong><br />

Citation: Gopakumar, S. & R.Y. Bai (<strong>2012</strong>). Ethnobotanical value <strong>of</strong> dry,<br />

fallen ovaries <strong>of</strong> Bombax ceiba L. (Bombacaceae: Malvales). <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3443–3446.<br />

Copyright: © S. Gopakumar & R. Yesoda Bai <strong>2012</strong>. Creative Commons<br />

Attribution 3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> this article<br />

in any medium for non-pr<strong>of</strong>it purposes, reproduction and distribution by<br />

providing adequate credit to the authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The authors wish to thank Mr. K.V. George and Mr.<br />

Chacko, local herbal dealers <strong>of</strong> Thrissur district, Kerala state, India for<br />

sharing information on the utilization aspects <strong>of</strong> dried ovaries.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Image 1. Flowers <strong>of</strong> Bombax ceiba<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3443–3446 3443


Ethnobotanical value Bombax ceiba<br />

use a decoction <strong>of</strong> its root along with some other<br />

plant species as an aphrodisiac (Anisuzzaman et al.<br />

2007). The timber is also used for making cheap<br />

furniture. The leaves <strong>of</strong> B. ceiba contain shamimin,<br />

a C-flavonol glucoside which has significant potency<br />

as a hypotensive agent (Saleem et al. 1999). The<br />

tree produces floss suitable for mattresses, cushions,<br />

pillows and quilts (Chand & Singh 1999). The young<br />

leaves, petioles and seed cake (with very little or no<br />

gossypol) are used as excellent cattle feed. Aborigines<br />

in Australia use B. ceiba for making dugout canoes<br />

and for making twine. The tap roots <strong>of</strong> young plants<br />

<strong>of</strong> this tree species are used as food in Australia (Brock<br />

2001).<br />

A detailed account <strong>of</strong> the ethnobotanical uses <strong>of</strong><br />

B. ceiba can be found in Jain et al. (2009). In India,<br />

many parts <strong>of</strong> this tree are being used for a variety <strong>of</strong><br />

purposes. The Munda and Oraon tribes <strong>of</strong> northeastern<br />

India consume the flowers, calyx, and roots <strong>of</strong> young<br />

plants <strong>of</strong> B. ceiba (Jain 1996). The immature calyx<br />

known as “Semargulla” is consumed as a vegetable<br />

in Uttar Pradesh, in addition to the flowers and fleshy<br />

calyx (Jain 1996). As per the Council for Scientific and<br />

Industrial Research (CSIR 1988), the protein content,<br />

phosphorous and ether extract <strong>of</strong> the raw calyces<br />

compare favorably with those <strong>of</strong> common vegetables<br />

such as carrot, raddish, turnip, cabbage and pumpkin.<br />

A paste <strong>of</strong> its petals is mixed with breast milk and is<br />

applied externally to cure “red eyes” (Reddy et al.<br />

2008). The young thorns are used as a substitute for<br />

betel nut. The root <strong>of</strong> B. ceiba is used as a tonic to heal<br />

waist pain (Srivastava 2007). The root tubers have<br />

high calcium content (Ghate et al. 1988). The gum<br />

oozing from young bark is edible (CSIR 1988). Gum<br />

extracted from older bark is used for book binding<br />

(Bose et al. 1998). During “Holika-dahan”, a tribal<br />

festival, this tree is burnt down, though this practice<br />

severely jeopardizes its population in northern India<br />

(Jain et al. 2009).<br />

Materials and Methods<br />

In the main campus <strong>of</strong> Kerala Agricultural<br />

University in Thrissur District (10 0 30’N & 76 0 15’E),<br />

Kerala State, India it was observed that some elderly<br />

women were regularly collecting fallen and dried<br />

ovaries (Image 2) from the base <strong>of</strong> standing B. ceiba<br />

trees. Based on one-to-one discussions with these<br />

women, we found that they were paid to collect and<br />

Image 2. A close view <strong>of</strong> dried ovaries<br />

S. Gopakumar & R.Y. Bai<br />

© S. Gopakumar<br />

supply these ovaries to the herbal markets located in<br />

the nearby Thrissur Town. On further inquiry, the<br />

women also informed us that they are not aware <strong>of</strong><br />

the actual use <strong>of</strong> these ovaries. The women just sell<br />

the collected ovaries in the nearby Thrissur herbal<br />

markets for one hundred Indian Rupees (1 US$= ~45<br />

Indian Rupees as on 03.12.2010) per kilogram. To<br />

know the exact use <strong>of</strong> the ovary, with the help <strong>of</strong> these<br />

women, we identified two key contact persons from<br />

among the local herbal dealers in Thrissur Town. We<br />

also interviewed 12 other herbal dealers on the actual<br />

use <strong>of</strong> these fallen Bombax ceiba ovaries. Information<br />

regarding the utilization <strong>of</strong> the ovaries was generated<br />

through personal interviews with these herbalists.<br />

Results and Discussion<br />

The interviewed herbal dealers informed us that<br />

these ovaries are in great demand in nearby Andhra<br />

Pradesh and Tamil Nadu states. There it is reportedly<br />

used in ‘biryani’ (traditional Indian spicy rice dish<br />

prepared using ‘Basmati’ rice mixed with meat, fish<br />

or vegetables) preparations. In the biryani, these dry<br />

ovaries will stabilize the cow’s ghee. The Thrissur<br />

herbalists employ the local women for collecting<br />

and delivering the ovaries to their shops. Once the<br />

item is received, the women get paid depending on<br />

the stock they supply. Except for random cleaning<br />

by winnowing, the collected ovaries as such are sold<br />

to the customers who come asking for it. The herbal<br />

traders reported that the ovaries are also sought after<br />

by the commercial cattle feed manufactures located in<br />

Thrissur District for use in cattle feeds.<br />

The calyces, flower petals and dried stamens <strong>of</strong> B.<br />

3444<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3443–3446


Ethnobotanical value Bombax ceiba<br />

ceiba contain a rich array <strong>of</strong> chemicals (CSIR 1988;<br />

Jain et al. 2009). Dried and powdered flowers <strong>of</strong> this<br />

species are made into bread with or without corn.<br />

According to CSIR (1988), the B. ceiba flowers are<br />

made into a conserve by boiling it along with the seeds<br />

<strong>of</strong> poppy and sugar in goat’s milk. Some bird species,<br />

squirrels and monkeys eat floral parts or whole flowers<br />

(Raju et al. 2005). However, the use <strong>of</strong> the fallen, dried<br />

ovaries in culinary preparations like ‘biryani’ and in<br />

commercial animal feed manufacture is a new report.<br />

Conclusions<br />

Of late, our scientists, natural resource managers<br />

and policy makers are increasingly recognizing the nonwood<br />

values <strong>of</strong> forests, including the socio-economic<br />

and cultural importance <strong>of</strong> NTFPs. The Planning<br />

Commission in its Approach to the 12 th Plan has also<br />

solicited suggestions to help organize markets, build<br />

infrastructure, capacity and upgrade skill for carrying<br />

out trade in NTFPs. The ethnobotanical information<br />

on NTFPs available in our country still remains to be<br />

documented. Since the dry, fallen ovaries <strong>of</strong> a multipurpose<br />

tree like Bombax ceiba is now observed to<br />

be used for a specific culinary purpose and is also<br />

used in cattle feed preparation, a detailed biochemical<br />

analysis will conclusively establish this additional<br />

ethnobotanical potential <strong>of</strong> this tree. If the nutritive<br />

value is established, the scope <strong>of</strong> farming this common<br />

tree species by employing tree improvement strategies<br />

will gain more significance. The confirmation <strong>of</strong><br />

its nutritive value will also set the record straight in<br />

the issues related to its intellectual property rights.<br />

Concurrently, the collection and trade <strong>of</strong> the dried<br />

ovaries <strong>of</strong> B. ceiba will provide our rural populace an<br />

additional opportunity to supplement their livelihoods<br />

and reduce poverty.<br />

References<br />

Anderson, P.J. & F.E. Putz (2002). Harvesting and<br />

conservation: are both possible for the palm, Iriartea<br />

deltoidea? Forest Ecology and Management 170(1–3):<br />

271–283.<br />

Angelsen, A. & S. Wunder (2003). Exploring the forest property<br />

link: key concepts, issues and research implications. Center<br />

for International Forestry Research Occasional Paper, Vol.<br />

40. Bogor, Indonesia.<br />

Anisuzzaman, M., A.H.M.M. Rahman, M. Harun-Or-<br />

Rashid, A.T.M. Naderuzzaman & A.K.M.R. Islam<br />

S. Gopakumar & R.Y. Bai<br />

(2007). An ethnobotanical study <strong>of</strong> Madhupur, Tangail.<br />

<strong>Journal</strong> <strong>of</strong> Applied Sciences Research 3(7): 519–530.<br />

Beer, J.H.D. & M.J. McDermott (1996). The Economic Value<br />

<strong>of</strong> Non-timber Forest Products in South East Asia—2nd<br />

Revised Edition. The Netherlands Committee for IUCN,<br />

Amsterdam, 197pp.<br />

Bhattacharya, A. & S. Mandal (2000). Pollination biology in<br />

Bombax ceiba Linn. Current Science 79(12): 1706–1712.<br />

Bose, T.K., P. Das & G.G. Maiti (1998). Trees <strong>of</strong> the World—<br />

Volume I. Regional Plant Resource Centre, Orissa, India,<br />

89pp.<br />

Brock, J. (2001). Top End Native Plants - A Comprehensive<br />

Guide to The Trees and Shrubs <strong>of</strong> The Top End <strong>of</strong> The<br />

Northern Territory, Australia. Reed New Holland, Darwin,<br />

Australia, 354pp.<br />

Chand, S. & S.K. Singh (1999). In vitro Propagation <strong>of</strong> Bombax<br />

ceiba L. (Silkcotton). Silvae Genetica 48(6): 313–317.<br />

CSIR (1988). Wealth <strong>of</strong> India—Volume 2: B. Raw Materials.<br />

Council for Scientific and Industrial Research, New Delhi,<br />

176–185pp.<br />

Ghate, V.S., V.V. Agte & V.D. Vartak (1988). Promising<br />

economic potential <strong>of</strong> shemul (Bombax ceiba L.) as a tuber<br />

crop. Indian <strong>Journal</strong> <strong>of</strong> Forestry 11(2): 158–159.<br />

Griffiths, A.D., A. Philips & C. Godjuwa (2003). Harvest<br />

<strong>of</strong> Bombax ceiba for the aboriginal arts industry, central<br />

Arnhem Land, Australia. Biological Conservation 113(2):<br />

295–305.<br />

Jain, S.K. (1996). Glimpses <strong>of</strong> Indian Ethnobotany. Oxford &<br />

IBH Publishing Co. New Delhi, Bombay, Calcutta, 365pp.<br />

Jain, V., S.K. Verma & S.S. Katewa (2009). Myths, traditions<br />

and fate <strong>of</strong> multipurpose Bombax ceiba L.- An appraisal.<br />

Indian <strong>Journal</strong> <strong>of</strong> Traditional Knowledge 8(4): 638–644.<br />

Kim, S., N. Sasaki & M. Koike (2008). Assessment <strong>of</strong> nontimber<br />

forest products in Phnom Kok community forest,<br />

Cambodia. Asia Europe <strong>Journal</strong> 6(2): 345–354.<br />

Liddle, D.T., R.J. Smith, J. Brock, G.J. Leach & G.T.<br />

Connors (1994). Atlas <strong>of</strong> The Vascular Rainforest Plants <strong>of</strong><br />

the Northern Territory, Flora <strong>of</strong> Australia Supplementary<br />

Series Number 3. Australian Biological Resources Study,<br />

Canberra, 180pp.<br />

Pei, S., Z. Guoxue & H. Huyin (2009). Application <strong>of</strong><br />

traditional knowledge in forest management: Ethnobotanical<br />

indicators <strong>of</strong> sustainable forest use. Forest Ecology and<br />

Management 257(10): 2017–2021.<br />

Raju, A.J.S., S.P. Rao & K. Rangaiah (2005). Pollination by<br />

bats and birds in the obligate outcrosser Bombax ceiba L.<br />

(Bombacaceae), a tropical dry season flowering tree species<br />

in the Eastern Ghats forests <strong>of</strong> India. Ornithological Science<br />

4(1): 81–87.<br />

Ramakrishnan, P.S., R. Boojh, K.G. Saxena, U.M.<br />

Chandrashekara, D. Depommier, S. Patnaik, O.P. Toky,<br />

A.K. Gangawar & R. Gangwar (2005). One Sun, Two<br />

Worlds: An Ecological Journey. UNESCO and Oxford &<br />

IBH, New Delhi, 286pp.<br />

Reddy, K.N., C.S. Reddy & V.S. Raju (2008). Ethnomedicinal<br />

observations among the Kondareddis <strong>of</strong> Khammam<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3443–3446<br />

3445


Ethnobotanical value Bombax ceiba<br />

District, Andhra Pradesh, India. Ethnobotanical Leaflets<br />

12: 916–26.<br />

Rist, L., R.U. Shaanker, E.J.M. Gulland J. & Ghazoul<br />

(2008). Managing mistletoes: the value <strong>of</strong> local practices<br />

for a non-timber forest resource. Forest Ecology and<br />

Management 255: 1684–1691.<br />

Saleem, R., M. Ahmad, S.A. Hussain, A.M. Qazi, S.I. Ahmad,<br />

M.H. Qazi, M. Ali, S. Faizi, S. Akhtar & S.N. Husnain<br />

(1999). Hypotensive, Hypoglycaemic and Toxicological<br />

Studies on the Flavonol C-Glycoside Shamimin from<br />

Bombax ceiba. Planta Medica 65(4): 331–334.<br />

S. Gopakumar & R.Y. Bai<br />

Srivastava, K. (2007). Ethnobotanical studies <strong>of</strong> some<br />

important ferns. Ethnobotanical Leaflets 11: 164–172.<br />

Sunderlin, W.D., A. Angelsen, B. Belcher, P. Burgers, R. Nasi,<br />

R. Santoso & S. Wunder (2005). Livelihoods, forests and<br />

conservation in developing countries: an overview. World<br />

Development 33: 1383–1402.<br />

Wightman, G.M. & M. Andrew (1989). Plants <strong>of</strong> the Northern<br />

Territory Monsoon Vine forests. Conservation Commission<br />

<strong>of</strong> the Northern Territory, Darwin, Australia, 163pp.<br />

3446<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3443–3446


JoTT No t e 4(15): 3447–3449<br />

A report <strong>of</strong> the threatened plant<br />

Decalepis hamiltonii Wight & Arn.<br />

(Asclepiadaceae) from the mid<br />

elevation forests <strong>of</strong> Pachamalai Hills <strong>of</strong><br />

the Eastern Ghats, Tamil Nadu, India<br />

V. Anburaja 1 , V. Nandagopalan 2 , S. Prakash 3 &<br />

A. Lakshmi Prabha 4<br />

1,2<br />

PG and Research Department <strong>of</strong> Botany, National College,<br />

Tiruchirappalli, Tamil Nadu 620001, India<br />

3<br />

Post Doctoral Scholar, VOLCANI Centre, Israel<br />

4<br />

Department <strong>of</strong> Plant Science, Bharathidasan University,<br />

Tiruchirappalli, Tamil Nadu 620024, India<br />

Email: 1 vanburaja@gmail.com (corresponding author),<br />

2<br />

veenan05@gmail.com, 3 vpsham@hotmail.com,<br />

4<br />

dralprabha@yahoo.com<br />

The Eastern Ghats are a series <strong>of</strong> discontinuous<br />

low hill ranges running generally northeast-southwest,<br />

parallel to the coast <strong>of</strong> the Bay <strong>of</strong> Bengal. The Eastern<br />

Ghats have a rich floristic diversity; more than 2500<br />

species <strong>of</strong> angiosperms occur in this region, which<br />

constitutes about 13% <strong>of</strong> the flowering plants <strong>of</strong> India<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: N.P. Balakrishnan<br />

Manuscript details:<br />

Ms # o3053<br />

Received 04 January <strong>2012</strong><br />

Final received 14 May <strong>2012</strong><br />

Finally accepted 28 September <strong>2012</strong><br />

Citation: Anburaja, V., V. Nandagopalan, S. Prakash & A.L. Prabha<br />

(<strong>2012</strong>). A report <strong>of</strong> the threatened plant Decalepis hamiltonii Wight & Arn.<br />

(Asclepiadaceae) from the mid elevation forests <strong>of</strong> Pachamalai Hills <strong>of</strong><br />

the Eastern Ghats, Tamil Nadu, India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15):<br />

3447–3449.<br />

Copyright: © V. Anburaja, V. Nandagopalan, S. Prakash & A. Lakshmi<br />

Prabha <strong>2012</strong>. Creative Commons Attribution 3.0 Unported License. JoTT<br />

allows unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes,<br />

reproduction and distribution by providing adequate credit to the authors<br />

and the source <strong>of</strong> publication.<br />

Acknowledgements: We thank the Secretary and Correspondent Thiru.<br />

K. Raghunathan and the Principal Dr. K. Anbarasu, National College<br />

(Autonomous), Tiruchirappalli for providing facilities during this research<br />

work. We also thank Dr. S. Soosai Raj, Assistant Pr<strong>of</strong>essor, St. Josephs<br />

College, Trichirappalli for helping me in plant identification. We are grateful<br />

to R. Rajan, and other <strong>of</strong>ficials <strong>of</strong> Botanical Survey <strong>of</strong> India, Regional Office,<br />

Southern Circle, Coimbatore for allowing me to refer the literatures. We<br />

thank Dravia Dass (Late) for helping me in the field collection. Our thanks<br />

to M. Sivakumar and other local people <strong>of</strong> the Pachamalai to help me in<br />

the field work.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

(Nair & Henry 1983; Saxena &<br />

Brahmam 1994; Pullaiah 1997;<br />

Pullaiah & Alimoulali 1997;<br />

Pullaiah & Chennaiah 1997).<br />

The Eastern Ghats is rich in medicinal and aromatic<br />

plant resources and indigenous livelihood traditions,<br />

therefore under the framework <strong>of</strong> proper policy and<br />

guidelines, these resources can be more effectively<br />

used to benefit local people.<br />

The loss <strong>of</strong> biodiversity due to the introduction<br />

<strong>of</strong> exotics is damaging native biodiversity. The<br />

habitat destruction and conversion by shifting<br />

cultivation, rapid industrialization and excessive<br />

exploitation <strong>of</strong> raw materials are some <strong>of</strong> the reasons<br />

for the disappearance <strong>of</strong> many plants and animals.<br />

Apart from these, developmental projects like dam<br />

constructions and settlements around have submerged<br />

a considerable part <strong>of</strong> the forests. Forest fires, cattle<br />

grazing and mining in the area are also responsible for<br />

the biodiversity decline.<br />

The Pachamalai Hills are a part <strong>of</strong> the Eastern<br />

Ghats situated in the central region <strong>of</strong> Tamil Nadu,<br />

India (11 0 09’–11 0 27’N & 78 0 28’–78 0 49’E; Image 1).<br />

They occupy an area <strong>of</strong> about 527.61km 2 and a range<br />

<strong>of</strong> 160–1072 m. The vegetated area is distributed into<br />

35 reserved forests. The Pachamalai Hills enjoy a<br />

subtropical climate with temperatures varying from<br />

25–31 0 C and annual rainfall ranging from 800–900<br />

mm. It supports many types <strong>of</strong> vegetation and <strong>of</strong><br />

these the dry evergreen forests have been considered<br />

significant due to their dense cover, besides their distinct<br />

composition. Evergreen forests are relatively common<br />

in the Western Ghats <strong>of</strong> peninsular India; however, dry<br />

evergreen forests are meagre in distribution and are<br />

confined to higher elevations <strong>of</strong> the Eastern Ghats that<br />

are discontinuous and in small patches. The presence<br />

<strong>of</strong> such vegetation is an indication that the lower<br />

elevation hills like the Eastern Ghats can harbour good<br />

vegetation and are the vestiges <strong>of</strong> a luxuriant vegetation<br />

cover <strong>of</strong> the past era and hence need to be protected<br />

(Soosairaj et al. 2007). The hills are most significant<br />

socio-culturally, as the most diversified forest patches<br />

are found here. These hills have been studied earlier<br />

mainly for floristic analysis (Matthew 1983).<br />

However, while working on the floral biodiversity<br />

<strong>of</strong> mid elevation forests <strong>of</strong> Pachamalai Hills, we<br />

collected Decalepis hamiltonii Wight & Arn. in the<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3447–3449 3447


Decalepis hamiltonii from Pachamalai Hills<br />

V. Anburaja et al.<br />

Image 1. A view <strong>of</strong> the Pachamalai Hills<br />

© V. Anburaja © V. Anburaja<br />

Image 2. Decalepis hamiltonii with flowers and fruits<br />

Gangavalli Hills, a part <strong>of</strong> Pachamalai at an altitude<br />

<strong>of</strong> 500–550 m. The plant D. hamiltonii was found as<br />

a single population in riparian vegetation <strong>of</strong> the study<br />

area (Image 2). Before this, D. hamiltonii had not<br />

been reported from Pachamalai (Matthew 1983).<br />

D. hamiltonii belongs to the family Asclepiadaceae.<br />

The habit <strong>of</strong> the plant is a liana. It is a globally<br />

endangered species (Raju & Ramana 2009). D.<br />

hamiltonii is one <strong>of</strong> the four species in the genus<br />

Decalepis. It is endemic to peninsular India and is<br />

known by various names like “Maredu Kommulu,<br />

Nannari kommulu and Madina Kommulu” in Telugu,<br />

“Makali ber” in Kannada and “Magali kizhangu” in<br />

Tamil. The plant root is used in ayurvedic medicines<br />

and in pickles.<br />

Regeneration is severely affected since most <strong>of</strong><br />

the plants are harvested prior to seed setting. Roots,<br />

leaves and follicles have medicinal properties. Roots<br />

are pickled and marketed on a large scale. This plant<br />

is also used as a substitute for the real Nannari plant<br />

Hemidesmus indicus (L) R. Br. Roots are harvested in<br />

hundreds <strong>of</strong> tonnes from Biligiri Rangaswamy Temple<br />

Hills for pickling and medicinal purposes. The<br />

Conservator <strong>of</strong> Forests <strong>of</strong> Vellore and Salem circle<br />

stated that around 100 tonnes <strong>of</strong> roots are auctioned<br />

every year. Girijan Co-operative Society, Andhra<br />

Pradesh traded 351.6 tonnes <strong>of</strong> roots from April 1997<br />

to January 1998.<br />

The tribal community <strong>of</strong> the Pachamalai Hills<br />

utilizes D. hamiltonii as ethnomedicine. It is taken<br />

orally to rejuvenate the body and is a popular<br />

health tonic. Ancient tribes in the Western Ghats<br />

<strong>of</strong> India have also used the roots <strong>of</strong> D. hamiltonii<br />

for several medicinal purposes particularly as an<br />

anti-inflammatory (Ashalatha et al. 2010). The root<br />

contains antioxidants.<br />

Vegetative and reproductive characters: Branchlets<br />

terete with swollen, winged nodes. Leaves ovate,<br />

subcoriaceous, longitudinally folded, base attenuate,<br />

margin entire, apex subacute; petiolate. Cymes<br />

axillary peduncled trichotomous cymes; bracts and<br />

bracteoles lanceolate; flowers pedicellate. Calyx -<br />

lobes oblong, tinged with brown, chartaceous, valvate,<br />

acute. Corolla cream, campanulate; lobes spreading,<br />

valvate, villous inside, acute. Stamens connivent;<br />

pollinia horizontal; pollinial bags closely adherent,<br />

flat; caudicle indistinct; receptacle minute. Corona<br />

double with 10 scales; outer scales truncate; inner<br />

flat, adhering to gynostegium. Glands 5 at the base<br />

<strong>of</strong> corolla, alternating with stamens, 2-fid. Ovaries<br />

subglobose; style present; stigma obtuse. Follicle<br />

oblong - lanceolate, cylindric; epicarp thick, crinkled;<br />

seeds ovate; testa angled, chartaceous, tipped with<br />

long, white, silky coma.<br />

Phenology: Flowering: May–July. Fruiting:<br />

January–March.<br />

Distribution: The species is endemic to peninsular<br />

India. It is has been recorded in the dry and moist<br />

deciduous forests <strong>of</strong> Karnataka (Hassan, Mysore,<br />

Bellary, Tumkur, Kolar), Andhra Pradesh (Kurnool,<br />

Chittoor, Nellore, Anantapur, Cuddapah districts) and<br />

Tamil Nadu (Chengalpattu, Coimbatore, Dharmapuri,<br />

Nilgiri)<br />

3448<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3447–3449


Decalepis hamiltonii from Pachamalai Hills<br />

References<br />

Ashalatha, K., Y. Venkateswarlu, A.M. Priya, P. Lalitha,<br />

M. Krishnaveni & S. Jayachandran (2010). Anti<br />

inflammatory potential <strong>of</strong> Decalepis hamiltonii (Wight<br />

& Arn) as evidenced by down regulation <strong>of</strong> pro<br />

inflammatory cytokines-TNF-alpha and IL-2. <strong>Journal</strong> <strong>of</strong><br />

Ethnopharmacology 130 (1): 167–170.<br />

Matthew, K.M. (1983). The Flora <strong>of</strong> The Tamil Nadu<br />

Carnatic—Part II. Rapinat Herbarium Tiruchirappalli,<br />

Tamil Nadu, India, 944pp.<br />

Nair, N.C. & A.N. Henry (1983). Flora <strong>of</strong> Tamilnadu, India—<br />

Volume 1. Botanical Survey <strong>of</strong> India. Southern Circle,<br />

Coimbatore.<br />

Pullaiah, T. (1997). Flora <strong>of</strong> Andhra Pradesh—Volume 3.<br />

V. Anburaja et al.<br />

Scientific Publishers, Jodhpur.<br />

Pullaiah, T. & D. Alimoulali (1997). Flora <strong>of</strong> Andhra<br />

Pradesh—Volume 2. Scientific Publishers, Jodhpur.<br />

Pullaiah, T. & E. Chennaiah (1997). Flora <strong>of</strong> Andhra<br />

Pradesh— Volume 1. Scientific Publishers, Jodhpur.<br />

Raju, A.J.S. & K.V. Ramana (2009). Pollination and<br />

seedling ecology <strong>of</strong> Decalepis hamiltonii Wight & Arn.<br />

(Periplocaceae), a commercially important, endemic and<br />

endangered species. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 1(10):<br />

497–506<br />

Soosairaj, S., S.J. Britto, B. Balaguru, N. Nagamurugan &<br />

D. Natarajan (2007). Zonation <strong>of</strong> conservation priority<br />

sites for effective management <strong>of</strong> tropical forests in India.<br />

Applied Ecology and Environmental Research 5(2): 37–<br />

48.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3447–3449<br />

3449


JoTT No t e 4(15): 3450–3453<br />

Note on Celastrus paniculatus Willd.<br />

ssp. aggregatus K.M. Matthew ex K.T.<br />

Matthew (Celastraceae)<br />

J.W. Francis 1 , M.M. Dandu 2 , M.M. Sardesai 3 &<br />

A.S. Dhabe 4<br />

1–4<br />

Department <strong>of</strong> Botany, Dr. Babasaheb Ambedkar<br />

Marathwada University, Aurangabad Maharashtra 431004, India<br />

Email: 1 jennetwfrancis@gmail.com, 2 mustafadandu@gmail.com,<br />

3<br />

sardesaimm@gmail.com (corresponding author),<br />

4<br />

arvindsdhabe@gmail.com<br />

Celastrus L., a large genus <strong>of</strong> the family<br />

Celastraceae, is widely distributed in tropical,<br />

subtropical, and temperate zones <strong>of</strong> Asia, Australia,<br />

and North and South America, as well as in<br />

Madagascar between 40 0 S and 47 0 N. It is represented<br />

by ca. 31 species in the world (Mabberley 2008). In<br />

India, the genus is represented by seven species and<br />

one subspecies (Francis et al. 2009), <strong>of</strong> which the<br />

majority <strong>of</strong> the species are endemic and distributed<br />

predominantly in northeastern India.<br />

Celastrus paniculatus Willd. belonging to<br />

subgenus Celastrus series Paniculati Rehd. & Wiels.,<br />

section Celastrus, is highly polymorphic and is one<br />

<strong>of</strong> the most widespread species distributed chiefly<br />

in India, Myanmar, Thailand, China, Indonesia and<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: N.P. Balakrishnan<br />

Manuscript details:<br />

Ms # o2912<br />

Received 13 August 2011<br />

Final received 10 April <strong>2012</strong><br />

Finally accepted 18 October <strong>2012</strong><br />

Citation: Francis, J.W., M.M. Dandu, M.M. Sardesai & A.S. Dhabe (<strong>2012</strong>).<br />

Note on Celastrus paniculatus Willd. ssp. aggregatus K.M. Matthew ex K.T.<br />

Matthew (Celastraceae). <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3450–3453.<br />

Copyright: © J.W. Francis, M.M. Dandu, M.M. Sardesai & A.S. Dhabe<br />

<strong>2012</strong>. Creative Commons Attribution 3.0 Unported License. JoTT allows<br />

unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it purposes,<br />

reproduction and distribution by providing adequate credit to the authors<br />

and the source <strong>of</strong> publication.<br />

Acknowledgements: The authors are thankful the Head, Department <strong>of</strong><br />

Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad for<br />

extending full support and cooperation. We also express our gratitude to<br />

the directors <strong>of</strong> BAMU, BLAT, BSI, CNH, HIFP, PBL, MH and SUK for their<br />

help during our consultation.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Philippines.<br />

The wider distribution and<br />

the variable leaf forms <strong>of</strong> this<br />

species have been the cause<br />

<strong>of</strong> many synonyms in the past (Ding-Hou 1955).<br />

Moreover, based on herbarium materials <strong>of</strong> different<br />

geographical locations and measurable differences,<br />

Ding-Hou treated three different populations as three<br />

subspecies—C. paniculatus Willd. ssp. paniculatus,<br />

C. paniculatus ssp. serratus (Blanco) Ding-Hou and<br />

C. paniculatus ssp. multiflorus (Roxb.) Ding-Hou.<br />

However, there are so many transitional blade forms<br />

that it is hard to distinguish between them (Zhang &<br />

Funston 2008).<br />

Thereafter, Matthew (1991, 1996, 1999) segregated<br />

C. paniculatus Willd. into two subspecies, namely,<br />

paniculatus (Images 4 & 5) and aggregatus (Images<br />

1–3) based on the differences in size <strong>of</strong> inflorescences,<br />

number <strong>of</strong> bisexual flowers, number <strong>of</strong> capsules per<br />

infrutescence and shape <strong>of</strong> the leaf apex. He further<br />

stated that subspecies aggregatus occurs clearly at<br />

higher altitudes than the typical variant.<br />

After 1996, the subspecies aggregatus was not<br />

recorded by subsequent workers. Later, Francis et<br />

al. (2009) reported this subspecies from Aurangabad<br />

District <strong>of</strong> Maharashtra, at about 600–800 m, followed<br />

by Hegde & Hegde (2011) from Karnataka State.<br />

Meanwhile, the present authors consulted different<br />

herbaria in India such as the Central National<br />

Herbarium, Howrah, Kolkata (CAL), Botanical<br />

Survey <strong>of</strong> India, Western Circle, Pune (BSI); Blatter<br />

Herbarium, St. Xavier’s College, Mumbai (BLAT);<br />

Dr. Babasaheb Ambedkar Marathwada University<br />

Herbarium, Aurangabad (BAMU), Shivaji University<br />

Herbarium, Kolhapur (SUK), Botanical Survey <strong>of</strong><br />

India, Coimbatore (MH) and Herbarium <strong>of</strong> French<br />

Institute <strong>of</strong> Pondicherry, Pondicherry (HIFP), Botanical<br />

Survey <strong>of</strong> India, Andaman & Nicobar Circle Regional<br />

Herbarium (PBL).<br />

During the herbarium consultation the authors found<br />

that, all the herbaria specimens <strong>of</strong> both the subspecies<br />

are deposited without segregation. The only exception<br />

was PBL, as it did not possess any herbarium specimen<br />

<strong>of</strong> subspecies aggregatus. However, the specimens<br />

collected from Andaman Islands were deposited at<br />

CAL. This shows that the subspecies occur in all the<br />

states <strong>of</strong> peninsular India and Andaman Islands.<br />

3450<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3450–3453


Celastrus paniculatus ssp. aggregatus<br />

The following specimens examined in various<br />

herbaria belong to the population <strong>of</strong> Celastrus<br />

paniculatus Willd. ssp. aggregatus K.M. Matthew<br />

ex K.T. Matthew. Hence, the present record <strong>of</strong> this<br />

subspecies also forms a new report to the states <strong>of</strong><br />

Andhra Pradesh, Kerala, Goa and Andaman Island.<br />

Celastrus paniculatus Willd. Sp. Pl. 1: 1125. 1795<br />

ssp. aggregatus K.M. Matthew ex K.T. Matthew in<br />

Kew Bull. 46: 540, f. l, 2. 1991; K.M. Matthew, Ill. Fl.<br />

Palni Hills: t. 122. 1996 & Fl. Palni Hills 1: 216. 1999;<br />

Francis et al. Rheedea 19 (1&2): 73–74. 2009. Hegde<br />

& Hegde in J. Threat. <strong>Taxa</strong>. 3(4): 1731–1734. 2011.<br />

Scandent shrubs. Leaves alternate, broadly<br />

elliptic, subcoriaceous, apex abruptly acute or retuse,<br />

base obtuse, margins shallowly crenulate, to 10×6<br />

cm. Flowers in condensed panicles, greenish white,<br />

polygamous. Sepals suborbicular. Petals ovate to<br />

oblong, reflexed. Capsule loculicidal, to 1.2×1.1 cm.<br />

Seeds 1-6 per capsule, broadly ellipsoid, completely<br />

covered with deep orange fleshy aril.<br />

Flowering and fruiting: July–<strong>December</strong>.<br />

Illus.: K.M. Mathew, loc. cit.<br />

Specimens examined:<br />

Andaman Islands: ix.1900, Andaman Islands, coll.<br />

Prain, 86181 (PBL).<br />

Andhra Pradesh: 19.ix.1956, Addatigala, E.<br />

Godavari, coll. S.K. Wagh, 09891 (BLAT); 19.ix.1956,<br />

Addatigala, E. Godavari, coll. S.K. Wagh, 09892<br />

(BLAT); 13.x.1964, Golugonda, coll. G.V. Subbarao,<br />

21647/41178 (MH); 21.viii.1965, Vishnu Nandi, coll.<br />

J.L. Ellis, 25419/49572, 49573 (MH); 28.viii.1966,<br />

Chitapalli, coll. G.V. Subbarao, 28137/53878 (MH);<br />

30.ix.1974, Papavinashinam Chittor, coll. G.V.<br />

Subbarao, 45907/89290, 89291 (MH); 12.xi.1975,<br />

Vallakadu, coll. Vivekananthan, 46652/90858,90859<br />

(MH); 24.ix.1994, Thattilanga, coll. V.S.<br />

Chandraseler, 103414/167606, 167607,167616 (MH)<br />

27.viii.1995, Bhadrachalam, coll. V.S. Chandraseler,<br />

104308/167932, 167933 (MH).<br />

Goa: 24.viii.1963, Todalowwary, Conacona, coll.<br />

K.C.Kanodia, 41553; 13.x.1964, Margao, coll. K.K.<br />

Ahuja, 48151 both deposited in BSI.<br />

Karnataka: 30.viii.1961, Namadachilume<br />

Forests, Mysore, coll. R. Seshagiri Rao, 38038<br />

(BSI); 24.viii.1964, Bandipur, coll. B.D. Naithani,<br />

22149/40437,40438(MH); 17.vii.1965, Bannuhalla,<br />

Hassan Dt., coll. C. Saldanha, 14151 (CNH);<br />

J.W. Francis et al<br />

29.xi.1971, Kalhatti-Masinagndi, coll. N.C.<br />

Rathakrishnan, 39079/76290, 76291 (MH); 09.x.1976,<br />

Mangala Devi Temple, coll. K. Vivekananthan,<br />

48626/94067, 94068 (MH); 19.ix.1980, Barangi,<br />

coll. G.V. Subbarao, 67577/137334,137934 (MH);<br />

28.iii.1977, Tlaspacanvery, coll. Pascal, 004118/819<br />

(HIFP); 28.iii.1977, Tlaspacanvery, coll. Pascal,<br />

004118/819 (HIFP); 08.vi.1985, Hatuebera Belta,<br />

coll. B.R. Ramesh, 004123/1220 (HIFP); 08.vi.1985,<br />

Hatuebera Belta, coll. B.R. Ramesh, 004124/1220<br />

(HIFP); 01.iv.1964, Malleshwara, coll. R. Sundara<br />

Raghvan, 46087 (BSI); 15.ix.1974, Joginath St. Forest<br />

Chitradurg, coll. N.P. Singh, 111184 (BSI); 29.iv.<br />

2007, Belgaon, N.V. Malpure, s.n. (SUK).<br />

Kerala: 15.ix.1928, Ponnemodi, coll. V.<br />

Narayanswamy, 1647/77773 (MH); 26.x.1929,<br />

Wayanad, coll. J.S. Gamble, 10024 (MH); 16.xi.1975,<br />

Thekkady, coll. K. Vivekananthan, 46689/90932,<br />

90933 (MH); 20.xii.1979, Chandanthode, coll.<br />

V.S. Ramchandran, 65351/114916,114917 (MH);<br />

26.iii.1980, Munnar to Kunnili, coll. Ramamurthy,<br />

66392/121965,121966 (MH); 25.ix.1981, Kulamavu,<br />

coll. C.N. Mohanan, 71974/137665,137666(MH);<br />

09.xii.1992, Peryar WLS. Kottayam, coll. Ramesh &<br />

De Frances che, 004128 (HIFP); 09.xii.1992, Peryar<br />

WLS. Kottayam, coll. Ramesh & De Frances che,<br />

004129 (HIFP).<br />

Maharashtra: 25.iv.1902, Amboli, Belgaum<br />

Vengrula Road, coll. G.A. Gammie (BSI); 20.x.1965,<br />

Pokhri Ghat, coll. J.A. Vasavada, 2529 (BSI);<br />

04.vii.1965, Tamboli,Ratnagiri, coll. P.J. Cherian,<br />

96502 (BSI); 09.xi.1965, Chankul near Amboli,<br />

Ratnagiri, coll. B.G. Kulkarni, 62243 (BSI);<br />

09.xi.1965, Chaukul near Amboli, Ratnagiri, coll.<br />

B.G. Kulkarni, 96500 (BSI); 18.vii.1966, Bahre-<br />

Nansi, Nashik, coll. R. Seshagiri Rao, 66882 (BSI);<br />

18.vi.1967, Mosai Village, Dhasai Range, Thane,<br />

coll. K.V. Billore, 73971 (BSI); 18.vii.1967, Kiratmal<br />

Point Range, Nashik, coll. John Cherian, 66854 (BSI);<br />

29.v.1970, Derwan, Ratnagiri, coll. B.G. Kulkarni,<br />

963387 (BSI); 07.v.1983, Vasi, Mumbai, coll. P.L.<br />

Narasimhan, 107029 (BSI); 15.xi.1983, Sonaburdi<br />

Forest River area, Buldhana, coll. P.G. Diwakar<br />

123063 (BSI); 29.ix.1984, Boripoda round, Nashik,<br />

coll. P.L. Narsimhan, 102023 (BSI); 27.v.1951,<br />

M.R.B.C mar. Parwati, Pune, coll. B.A. Razi, 09981<br />

(BLAT); 04.ix.1954, Waghai, Pimpri road, coll. Fr.<br />

Santapau S.J., 09939 (BLAT); 17.vii.1960, Karanja<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3450–3453<br />

3451


Celastrus paniculatus ssp. aggregatus<br />

Gram, coll. P. Divakar, 09939 (BLAT); 23.viii.1960,<br />

Gram hill, coll. P. Divakar, 09966 (BLAT); 10.vi.1975,<br />

Chauka, Aurangabad, coll. Pokle D.S., 003161<br />

(BAMU); 15.ix.1977, Nagzari, coll. B.R. Zate, 003146<br />

(BAMU); 15.ix.1977, Nagzari, coll. B.R. Zate, 003147<br />

(BAMU);15.ix.1977, Nagzari, coll. B.R. Zate, 003148<br />

(BAMU); 15.ix.1977, Nagzari, coll. B.R. Zate, 003149<br />

(BAMU); 09.viii.2000, Amba, Kolhapur Dist., coll.<br />

P.D. Mahekar, SUK68 (SUK); 21.vii.2008, Mhaismal,<br />

Aurangabad, coll. J.W. Francis & A.S. Dhabe,<br />

004902 (BAMU); 23.viii.2008, Ratnagiri, coll. J.W.<br />

Francis & A.S. Dhabe, 004904 (BAMU); 05.xi.2008,<br />

Lamangaon, Aurangabad, coll. J.W. Francis & A.S.<br />

Dhabe, 004909 (BAMU); 04.vii.2009, Gautala,<br />

coll. J.W. Francis & A.S. Dhabe, 004917 (BAMU);<br />

28.viii.2009, Radhanagri, Kolhapur, coll. J.W. Francis<br />

& A.S.Dhabe, 004922 (BAMU); 7.v.2011, Sulibanjan,<br />

Aurangabad, coll. A.S. Dhabe & J.W. Francis, 004936<br />

(BAMU).<br />

© M.M. Dandu<br />

J.W. Francis et al<br />

Tamil Nadu: 30.xii.1902, Udhagamandalam,<br />

coll. C.A. Barber, 5372/10033 (MH); 30.xii.1902,<br />

Udhagamandalam, coll. C.A. Barber, 5372/72866<br />

(MH); 09.ix.1969, Panagudi, coll. B.V. Shetty,<br />

32314/62492,62493 (MH); 20.v.1971, Nanduvattam,<br />

coll. J.L. Ellis, 38490/75109,75110 (MH); 23.i.1972,<br />

Madanand, coll. E. Vajravelu, 39596/77237,77238<br />

(MH); 25.xi.1972, Edapalayam, coll. B.D. Sharma,<br />

41666/80203, 80233(MH); 15.ix.1957, Shiriman<br />

Hills, Chennai, coll. Wallithanam, 09926 (BLAT)<br />

REFERENCES<br />

Ding-Hou (1955). A revision <strong>of</strong> the Genus Celastrus. Annals <strong>of</strong><br />

the Missouri Botonical Garden 42(3): 215–302.<br />

Francis, J.W., A.S. Dhabe & M.M. Sardesai (2009). Celastrus<br />

paniculatus subsp. aggregatus (Celastraceae), an addition to<br />

the Flora <strong>of</strong> Maharashtra State. Rheedea 19(1&2): 73–74.<br />

Hegde, G.R. & G.R. Hegde (2011). Report on the extended<br />

distribution <strong>of</strong> two endemic plants (Angiospermae) in<br />

the central Western Ghats <strong>of</strong> Karnataka, India. <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 3(4): 1731–1734.<br />

Mabberley, D.J. (2008). Mabberley’s Plant-Book: A Portable<br />

Dictionary <strong>of</strong> Plants, Their Classification and Uses (Third<br />

© J.W. Francis<br />

Image 1. Celastrus paniculatus spp. aggregatus<br />

Image 2. Celastrus paniculatus spp. aggregatus<br />

Key to the subspecies <strong>of</strong> Celastrus paniculatus Willd.<br />

1a. Inflorescence on lateral shoots, shorter than leaves ............................................................ ssp. aggregatus<br />

1b. Inflorescence on terminal shoots, twice as long or more than twice as long as the leaves ..... ssp. paniculatus<br />

3452<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3450–3453


Celastrus paniculatus ssp. aggregatus<br />

J.W. Francis et al<br />

© M.M. Dandu<br />

Image 4. Celastrus paniculatus spp. paniculatus<br />

© M.M. Dandu<br />

Image 3. Herbarium specimen <strong>of</strong> Celastrus paniculatus<br />

ssp. aggregatus<br />

Edition). Cambridge University Press, Cambridge, UK.<br />

1–1021pp.<br />

Matthew, K.M. (1991). Precursory Notes for a Flora <strong>of</strong> the<br />

Palni Hills, South India. Kew Bulletin 46(3): 539–546.<br />

Matthew, K.M. (1996). Illustrated Flora <strong>of</strong> Palni Hills. t. 122.<br />

The C.L.S. Press, Madras, 1-979pp.<br />

Matthew, K.M. (1999). Flora <strong>of</strong> Palni Hills. Vol. 1: 216. The<br />

C. L. S. Press, Madras.<br />

Zhang, Z. & A.M. Funston (2008). Flora <strong>of</strong> China, pp. 466–<br />

474. In: Zhengyi, W., P.H. Raven & H. Deyuan (eds.). Flora<br />

<strong>of</strong> China—11. Missouri Botanical Garden Press, 622pp.<br />

Image 5. Celastrus paniculatus spp. paniculatus<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3450–3453<br />

3453


JoTT No t e 4(15): 3454–3461<br />

Checklist <strong>of</strong> Ericaceae in Tuensang<br />

District <strong>of</strong> Nagaland, India with special<br />

reference to Mt. Saramati<br />

S. Panda<br />

Post Graduate Department <strong>of</strong> Botany, Darjeeling Govt. College,<br />

Darjeeling, West Bengal 734101, India<br />

Email: bgc.panda@gmail.com<br />

During the course <strong>of</strong> revisionary work on Indian<br />

Ericaceae carried out at the Central National Herbarium<br />

(CAL) under the “Flora <strong>of</strong> India Project” (1999–2004),<br />

an attempt was made to survey the inaccessible and<br />

dense virgin flora <strong>of</strong> Mt. Saramati besides other parts<br />

<strong>of</strong> Tuensang District. Earlier under the leadership <strong>of</strong><br />

N.L. Bor, an expedition team consisting <strong>of</strong> F. Kingdon-<br />

Ward, J.H. Hutton and B.S. Hartland surveyed a part<br />

<strong>of</strong> Tuensang District including Mt. Saramati in 1935<br />

(Bor 1936). After six decades, T.M. Hynniewta<br />

(1994) surveyed a part <strong>of</strong> this district including the<br />

mountain. Only a few ericaceous taxa (12 taxa) were<br />

enumerated earlier mostly confined to the vicinity <strong>of</strong><br />

Mt. Saramati. A team <strong>of</strong> six members, including the<br />

author, from the Botanical Survey <strong>of</strong> India, Eastern<br />

Circle, Shillong surveyed different parts <strong>of</strong> Tuensang<br />

District including Mt. Saramati during March–April,<br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: P. Lakshminarasimhan<br />

Manuscript details:<br />

Ms # o2939<br />

Received 09 September 2011<br />

Final received 09 May <strong>2012</strong><br />

Finally accepted 15 October <strong>2012</strong><br />

Citation: Panda, S. (<strong>2012</strong>). Checklist <strong>of</strong> Ericaceae in Tuensang District<br />

<strong>of</strong> Nagaland, India with special reference to Mt. Saramati. <strong>Journal</strong> <strong>of</strong><br />

<strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3454–3461.<br />

Copyright: © S. Panda <strong>2012</strong>. Creative Commons Attribution 3.0 Unported<br />

License. JoTT allows unrestricted use <strong>of</strong> this article in any medium for nonpr<strong>of</strong>it<br />

purposes, reproduction and distribution by providing adequate credit<br />

to the authors and the source <strong>of</strong> publication.<br />

Acknowledgements: The author is grateful to Dr. M. Sanjappa, ex-Director,<br />

Botanical Survey <strong>of</strong> India for guidance and providing all facilities during field<br />

survey to Tuensang district including Saramati Mt. in 2003. Thanks are<br />

also due to Mr. Chuwayuti Cheng, Extra-Assistant Commissioner, Kiphire<br />

for his kind permission to survey and providing one Amakhangese guide<br />

as interpretator, and to Dr. A.A. Mao, Jt. Director, Arunachal Field Station,<br />

Itanagar (then Scientist C at ASSAM) and Dr. T.M. Hynniewta, In-Charge<br />

<strong>of</strong> ASSAM for their all sorts <strong>of</strong> help for Saramati visit.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

2003 and enumerated 30 taxa<br />

<strong>of</strong> Ericaceae, <strong>of</strong> which 25 were<br />

collected from Mt. Saramati.<br />

Mt. Saramati lies approximately<br />

between 26 0 2’–26 0 7’N & 97 0 6’–97 0 13’E with an area<br />

<strong>of</strong> about 200km 2 and altitudes ranging from 2400–<br />

3826 m on the Barail range in Tuensang District<br />

under Kiphire subdivision <strong>of</strong> Nagaland. Mt. Saramati<br />

harbours both temperate as well as Himalayan alpine<br />

vegetation (2400–3841 m). Alpine vegetation starts<br />

at the base camp area <strong>of</strong> Mt. Saramati (3000m) and<br />

extends up to the peak (3841m). Although Changkija<br />

& Kumar (1997) mentioned that “the alpine vegetation<br />

is met with at high altitudes in ridges <strong>of</strong> Saramati<br />

range, which remains covered with snow for a major<br />

part <strong>of</strong> the year from October to April”. The journey<br />

from Kohima (state capital) to Kiphire (subdivision<br />

<strong>of</strong> Tuensang District), took about 10 hours by jeep<br />

(254km) and from Kiphire to Penkim Village through<br />

Pungro (Circle H.Q.) and Salumi by jeep through a<br />

narrow and muddy non-metal road took one day (about<br />

62km). From Penkim Village (2100m) it took three<br />

days <strong>of</strong> trekking to reach the peak <strong>of</strong> Mt. Saramati<br />

through Thanamier Village (Fig. 1). A part <strong>of</strong> Mt.<br />

Saramati falls within Myanmar. Besides Mt. Saramati,<br />

other places in Tuensang District like Kiphire, Lothar,<br />

Pungro, Salumi, Penkim, Fakim Wildlife Sanctuary<br />

and Thanamier were also surveyed.<br />

Climate <strong>of</strong> Mt. Saramati and its vicinity: During<br />

summer, the average rainfall is between 200–250<br />

cm and the bulk <strong>of</strong> precipitation is received through<br />

the south-west monsoon. The temperature varies<br />

between 10–20 0 C. In winter, the climate is generally<br />

dry with low precipitation. The temperature varies<br />

between 10–5 0 C and heavy snowfall occurs at higher<br />

elevations.<br />

Topography: Mt. Saramati lies on the Barail range<br />

which flanks the boundary with Myanmar. The area is<br />

entirely hilly and the terrain is one <strong>of</strong> the most rugged<br />

with successive hills <strong>of</strong> varying heights (Image 1A).<br />

The family Ericaceae Juss. comprises ca. 117<br />

genera and 3850 species, cosmopolitan except deserts,<br />

usually montane in tropics (Mabberley 2008). A total<br />

<strong>of</strong> 13 genera and ca. 200 species occur in India (Panda<br />

2008). The family is represented by nine genera and<br />

37 species in Nagaland (Panda 2008). In this paper, the<br />

currently accepted names, habitat, available field data,<br />

3454<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461


Ericaceae in Tuensang District<br />

S. Panda<br />

Figure 1. Field study areas and collection sites in Tuensang District (Kiphire to Saramati Mt.) showing detailed distribution<br />

<strong>of</strong> taxa (March–April 2003)<br />

distribution, threats, relative abundance and specimens<br />

examined <strong>of</strong> 30 taxa belonging to Ericaceae recorded<br />

from Tuensang District along with images <strong>of</strong> live<br />

and herbarium specimens <strong>of</strong> some taxa are provided<br />

for easy identification in the field. The enumeration<br />

includes, one new taxon, two new records from India<br />

and three new distributional records for Nagaland.<br />

Of the 30 taxa enumerated, five are endemic to Naga<br />

Hills and two are endemic to Naga Hills and Eastern<br />

Himalaya. Ten taxa are classified as threatened<br />

(Anonymous 2009; Vie et al. 2009) due to rapid<br />

habitat degradation as a result <strong>of</strong> natural weathering<br />

and rising jhum cultivation practices among different<br />

Naga ethnic groups (Image 1B).<br />

Enumeration<br />

A. Subtropical region (1100–1700): It includes<br />

Kiphire, Pungro Circle including Salumi areas.<br />

(i) Lyonia ovalifolia (Wall.) Drude: Corolla greywhite,<br />

tubular. Habit—stout erect shrub to treelet up<br />

to 3m high. Habitat—growing along rocky slopes.<br />

Field status—common.<br />

Distribution: India (Himalaya and northeastern<br />

India excluding Tripura), Pakistan, Nepal, Bhutan,<br />

Bangladesh, western China, Taiwan, northern<br />

Myanmar, Thailand, Malesia and Japan.<br />

Specimens examined: 30.iii.2003, Kiphire to<br />

Pungro, 1600m, coll. S. Panda s.n. (CAL); 31.iii.2003,<br />

near Thanamier Village, Tuensang District, 1800m,<br />

coll. S. Panda 30861 (CAL) (Image 2B).<br />

(ii) Vaccinium exaristatum Kurz: Corolla white<br />

to pinkish. Habit—stout erect shrub to treelet up to<br />

5m high. Habitat—growing along rocky slopes. Field<br />

status—common.<br />

Distribution: India (northeastern India: Nagaland,<br />

Manipur and Mizoram), China, Myanmar, Thailand,<br />

Laos and Vietnam. Newly recorded from India from<br />

Naga Hills (Image 3F).<br />

Specimens examined: 30.iii.2003, near Pungro<br />

village, Tuensang District, 1300m, S. Panda 30857<br />

(CAL). Newly recorded from India from Naga Hills<br />

(Image 3F).<br />

B. Subtropical-temperate mixed region (1700–2300<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461<br />

3455


Ericaceae in Tuensang District<br />

S. Panda<br />

A<br />

B<br />

Image 1. A - View <strong>of</strong> Saramati Mountain Peak from the Ridge; B - Jhum cultivation practice by Amakhangese Nagas at<br />

Thanamier.<br />

m): It includes Penkim, lower part <strong>of</strong> Fakim Wildlife<br />

Sanctuary and Thanamier areas.<br />

(iii) Agapetes borii Airy Shaw: Corolla lemon<br />

yellow. Habit—dwarf bushy shrub up to 0.5m high.<br />

Habitat—growing as epiphyte on Rhododendron<br />

arboretum. Field status—threatened (mass cutting <strong>of</strong><br />

forest trees due to jhum cultivation practices).<br />

Distribution: Endemic to Naga Hills in India<br />

(northeastern India: Nagaland and Manipur).<br />

Specimens examined: 01.iv.2003, above Thanamier<br />

Village, ca. 2200m, coll. S. Panda s.n. (CAL).<br />

(iv) A. incurvata (Griff.) Sleumer: Corolla<br />

light green. Habit—dwarf shrub up to 0.3m high.<br />

Habitat—growing as epiphyte on Quercus incana.<br />

Field status—threatened (mass cutting <strong>of</strong> forest trees<br />

due to jhum cultivation practices).<br />

Distribution: India (eastern Himalaya: Sikkim,<br />

Arunachal Pradesh; northeastern India: Meghalaya<br />

and Nagaland), Nepal, Bhutan, Bangladesh and<br />

China (southeastern Xizang). Newly recorded from<br />

Nagaland.<br />

Specimens examined: 01.iv.2003, above Thanamier<br />

Village, ca. 2100m, coll. S. Panda s.n. (CAL).<br />

(v) Lyonia macrocalyx (J. Anthony) Airy Shaw:<br />

Flowers not seen, fruits green. Habit—stout erect<br />

shrub to treelet up to 2m high. Habitat—growing<br />

along rocky slopes. Field status—threatened (only<br />

two small populations were observed).<br />

Distribution: India (eastern Himalaya: Arunachal<br />

Pradesh and northeastern India: Nagaland) western<br />

China and N Myanmar. Newly recoded from India as<br />

well as from Naga Hills (Image 2C).<br />

Specimens examined: 31.iii.2003, Penkim to<br />

Thanamier Village, Tuensang District, 1800m, coll. S.<br />

Panda 30858.<br />

(vi) Rhododendron arboreum Sm.: Corolla blood<br />

red. Habit—treelet up to 2m high. Habitat—growing<br />

along rocky slopes. Field status—common.<br />

Distribution: India (Arunachal Pradesh, Meghalaya,<br />

Nagaland, Manipur and Mizoram), China (Yunnan,<br />

Guizhou), northern Myanmar and northern Thailand.<br />

Specimens examined: 31.iii.2003, Penkim to<br />

Thanamier, ca. 2000m, coll. S. Panda 30856 (CAL).<br />

(Image 2D).<br />

(vii) Vaccinium vacciniaceum (Roxb.) Sleumer:<br />

Corolla light green to light yellow. Habit—stout erect<br />

shrub up to 1m high. Habitat—epiphytic on old tree<br />

trunks <strong>of</strong> Quercus incana. Field status—Common.<br />

Distribution: India (eastern Himalaya: Darjeeling<br />

in West Bengal, Sikkim and Arunachal Pradesh and<br />

northeastern India: Meghalaya, Nagaland, Manipur<br />

and Mizoram), Nepal, Bhutan, southwestern China<br />

and northern Myanmar.<br />

Specimens examined: 01.iv.2003, Thanamier<br />

Village, 2000m, coll. S. Panda 30865 (CAL) (Image<br />

3E).<br />

(viii) V. manipurense (Watt ex Brandis) Sleumer:<br />

Corolla light pink, immature fruits green. Habit—<br />

stout erect shrub up to 1m high. Habitat—growing as<br />

epiphyte on Quercus sp. Field status—threatened.<br />

Distribution: Endemic to India (eastern Himalaya:<br />

Arunachal Pradesh and northeastern India: Meghalaya,<br />

3456<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461


Ericaceae in Tuensang District<br />

Nagaland, Manipur), Nepal, Bhutan, southwestern<br />

China and northern Myanmar.<br />

Specimens examined: 01.iv.2003, above Thanamier<br />

Village, Tuensang District, 2300m, coll. S. Panda<br />

30864 (CAL) (Image 3B).<br />

(ix) V. dunalianum Wight: Flowers not seen, fruits<br />

berries, black. Habit —pendent dwarf shrub up to 1m<br />

high. Habitat—growing as epiphyte on Quercus sp.<br />

Field status—common.<br />

Distribution: India (eastern Himalaya and<br />

northeastern India excluding Tripura and Mizoram),<br />

Nepal, Bhutan, western China, Taiwan, northern<br />

Myanmar and Vietnam.<br />

Specimens examined: 31.iii.2003, Penkim to<br />

Thanamier, 2000m, coll. S. Panda s.n. (CAL).<br />

C. Temperate region (2300–2800 m): It includes<br />

7km away from Thanamier Village up to Saramati<br />

ridge.<br />

(x) Gaultheria hookeri C.B. Clarke: Corolla<br />

urceolate, pinkish. Habit—dwarf bushy shrub up to<br />

0.5m high. Habitat—growing along rocky slopes.<br />

Field status—common.<br />

Distribution: India (eastern Himalaya: Darjeeling<br />

in West Bengal, Sikkim and Arunachal Pradesh<br />

and northeastern India: Nagaland), Nepal, Bhutan,<br />

southwestern China and northern Myanmar. Newly<br />

recorded from Naga Hills (Image 2A).<br />

Specimens examined: 02.iv.2003, Saramati ridge,<br />

Tuensang District, 2800m, S. Panda 30872 (CAL).<br />

(xi) G. nummularioides D. Don: Flowers not seen,<br />

fruits capsule, black. Habit—mat forming procumbent<br />

dwarf shrub up to 0.2m high. Habitat—growing along<br />

rocky slopes and ridges. Field status—common.<br />

Distribution: India (Himalayas and northeastern<br />

India: Meghalaya, Nagaland and Manipur), Pakistan,<br />

Nepal, Bhutan, western China, northern Myanmar, Sri<br />

Lanka and Malesia.<br />

Specimens examined: 02.iv.2003, Saramati Ridge,<br />

2800m, S. Panda 30874 (CAL).<br />

(xii) Pieris formosa (Wall.) D. Don: Corolla<br />

urceolate, snow white. Habit—stout erect shrub to<br />

treelet up to 5m high. Habitat—growing along rocky<br />

slopes. Field status—common.<br />

Distribution: India (eastern Himalaya: Darjeeling<br />

in West Bengal, Sikkim, Arunachal Pradesh and<br />

northeastern India: Meghalaya, Nagaland and<br />

Manipur), Nepal, Bhutan, southwestern China,<br />

S. Panda<br />

northern Myanmar and Vietnam.<br />

Specimens examined: 02.iv.2003, Saramati Ridge,<br />

2700–3200 m, coll. S. Panda 30868 (CAL).<br />

(xiii) Rhododendron wattii Cowan: Corolla rose<br />

red to pink. Habit—treelet up to 1m high. Habitat—<br />

growing along rocky slopes. Field status—threatened<br />

(only three plants were observed throughout Mt.<br />

Saramati).<br />

Distribution: Endemic to Naga Hills in India<br />

(Nagaland and Manipur).<br />

Specimens examined: 01.iv.2003, Saramati ridge,<br />

2600m, coll. S. Panda s.n. (CAL) (Image 2E).<br />

(xiv) R. thomsonii Hook. f.: Corolla deep crimson<br />

to blood red. Habit—treelet up to 2m high. Habitat—<br />

growing along rocky slopes. Field status—common.<br />

Distribution: India: eastern Himalaya (Sikkim,<br />

Arunachal Pradesh) and northeastern India (Nagaland),<br />

Bhutan and southwestern China.<br />

Specimens examined: 01.iv.2003, Saramati ridge,<br />

2600m, coll. S. Panda 30898 (CAL).<br />

(xv) R. hodgsonii Hook. f.: Corolla rose-purple.<br />

Habit—treelet up to 4m high. Habitat—growing<br />

along rocky slopes. Field status—common.<br />

Distribution: India: eastern Himalaya (Sikkim,<br />

Darjeeling in West Bengal and Arunachal Pradesh)<br />

and northeastern India (Nagaland), Nepal, Bhutan and<br />

western China.<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

proper, 2600m, coll. S. Panda 30899 (CAL).<br />

(xvi) R. formosum Wall. var. inaequale (Hutch.)<br />

Cullen: Corolla white flushed pink. Habit—treelet up<br />

to 1m high. Habitat—growing along rocky slopes.<br />

Field status—threatened (two small populations were<br />

observed along Saramati ridge and its vicinity).<br />

Distribution: Endemic to India (eastern Himalaya:<br />

Arunachal Pradesh and northeastern India: Meghalaya,<br />

Nagaland and Manipur).<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

proper, 2600m, coll. S. Panda s.n. (CAL).<br />

(xvii) Vaccinium amakhangium Panda &<br />

Sanjappa: Corolla urceolate, light green. Habit—<br />

dwarf shrub up to 0.5m high. Habitat—growing as<br />

epiphyte on Quercus incana. Field status—threatened<br />

(mass cutting <strong>of</strong> large trees due to jhum cultivation<br />

practices). This is a newly described species (Panda &<br />

Sanjappa 2008) (Image 3C).<br />

Distribution: Endemic to Nagaland in India.<br />

Specimens examined: 01.iv.2003, above Thanamier<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461<br />

3457


Ericaceae in Tuensang District<br />

S. Panda<br />

Image 2. A - Gaultheria hookeri; B - Lyonia ovalifolia; C - L. macrocalyx; D - Rhododendron arboreum; E - R. wattii;<br />

F - R. wightii<br />

Village, on the way to Mt. Saramati, 2300m, coll. S.<br />

Panda 30862 (CAL).<br />

(xviii) V. lamellatum P.F. Stevens: Corolla tubulourceolate,<br />

whitish-green. Habit—stout and erect<br />

dwarf shrub up to 0.5m high. Habitat—grown as<br />

epiphytic on Quercus incana. Field status—threatened<br />

(mass cutting <strong>of</strong> large trees due to jhum cultivation<br />

practices).<br />

Distribution: Endemic to Naga Hills in India<br />

(Nagaland and Manipur). Newly recorded from<br />

Nagaland (Image 3A).<br />

Specimens examined: 01.iv.2003, above Thanamier<br />

Village, Tuensang District, 2300m, coll. S. Panda<br />

30863 (CAL).<br />

(xix) V. retusum (Griff.) Hook. f. ex C.B. Clarke:<br />

Corolla urceolate, light pink. Habit—stout erect dwarf<br />

shrub up to 1m high. Habitat—growing along moist<br />

rocky slopes. Field status—common.<br />

Distribution: India (eastern Himalaya and<br />

northeastern India: Nagaland and Manipur), Nepal,<br />

3458<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461


Ericaceae in Tuensang District<br />

S. Panda<br />

Image 3. A - Vaccinium lamellatum; B - V. manipurense; C - V. amakhangium; D - V. retusum; E - V. vacciniaceum;<br />

F - V. exaristatum<br />

Bhutan, southwestern China and northern Myanmar.<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

proper, 2600m, coll. S. Panda s.n. (CAL) (Image 3D).<br />

(xx) V. nummularia Hook. f. & Thomson: Corolla<br />

urceolate, pinkish. Habit—stout pendent dwarf shrub<br />

up to 1m high. Habitat—growing along moist rocky<br />

slopes. Field status—common.<br />

Distribution: India (Sikkim, West Bengal and<br />

Arunachal Pradesh and Nagaland), Nepal, Bhutan,<br />

southwestern China, and northern Myanmar.<br />

Specimens examined: Saramati ridge, 2800m,<br />

02.iv.2003, coll. S. Panda 30875 (CAL).<br />

D. Border <strong>of</strong> temperate and sub-alpine region<br />

up to 3300m: It includes the whole Saramati ridges<br />

including the base camp area.<br />

(xxi) R. wightii Hook. f.: Corolla yellow with<br />

purple flecks on the posterior lobe and blotch at base.<br />

Habit—treelet up to 4m high. Habitat—growing along<br />

moist rocky slopes. Field status—threatened (4 plants<br />

observed along ridge and its vicinity).<br />

Distribution: India: Eastern Himalaya (Sikkim and<br />

Arunachal Pradesh) and northeastern India (Nagaland),<br />

Nepal, Bhutan and western China.<br />

Specimens examined: Saramati ridge, 2650 m,<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461<br />

3459


Ericaceae in Tuensang District<br />

02.04.2003, S. Panda s.n. (CAL) (Image 2F).<br />

(xxii) R. barbatum Wall. ex G. Don: Corolla blood<br />

red with darker nectar pouches at base. Habit—treelet<br />

up to 1m high. Habitat—growing along moist rocky<br />

slopes. Field status—common.<br />

Distribution: India: Himalaya (Uttarakhand,<br />

Sikkim, Darjeeling in West Bengal, Arunachal<br />

Pradesh) and northeastern India (Nagaland), Nepal,<br />

Bhutan and southwestern China.<br />

Specimens examined: 02.iv.2003, Saramati ridge,<br />

2650m, coll. S. Panda s.n. (CAL).<br />

(xxiii) R. maecabeanum (Watt ex Balf. f.) Cullen:<br />

Corolla lemon yellow. Habit—treelet up to 3m high.<br />

Habitat—growing along moist rocky slopes. Field<br />

status—common.<br />

Distribution: Endemic to Naga Hills in India<br />

(Nagaland and Manipur).<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

to Base camp area, coll. S. Panda s.n. (CAL).<br />

(xxiv) R. dalhousii Hook. f.: Corolla funnelcampanulate,<br />

white with pinkish tinge. Habit—treelet<br />

up to 1m high. Habitat—growing along moist rocky<br />

slopes. Field status—common.<br />

Distribution: India (Darjeeling in West Bengal,<br />

Sikkim and Arunachal Pradesh), Nepal; Bhutan and<br />

China (southeastern Xizang).<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

to Base camp area, coll. S. Panda s.n. (CAL).<br />

(xxv) R. griffithianum Wight: Corolla snow white.<br />

Habit—treelet up to 2m high. Habitat—growing<br />

along moist rocky slopes. Field status—threatened<br />

(observed 3 plants only along ridge and its vicinity).<br />

Distribution: India: Eastern Himalaya (Sikkim,<br />

Darjeeling in West Bengal, Arunachal Pradesh) and<br />

northeastern India (Nagaland), Nepal, Bhutan and<br />

southwestern China.<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

to Base camp area, ca. 3100m, S. Panda s.n. (CAL).<br />

(xxvi) R. kendrickii Nutt.: Corolla scarlet red.<br />

Habit—treelet up to 3m high. Habitat—growing along<br />

moist rocky slopes. Field status—threatened.<br />

Distribution: India: Eastern Himalaya (Arunachal<br />

Pradesh) and northeastern India (Nagaland), Bhutan<br />

and western China.<br />

Specimens examined: 02.iv.2003, Saramati ridge<br />

to Base camp area, ca. 3100m, coll. S. Panda 30897<br />

(CAL).<br />

S. Panda<br />

E. Alpine region (3300–3841 m): It includes above<br />

Base camp area up to the peak.<br />

(xxvii) Cassiope fastigiata (Wall.) D. Don:<br />

Vegetative. Habit—decumbent dwarf shrub up to 0.1m<br />

high, <strong>of</strong>ten growing in tufts. Habitat—growing along<br />

moist alpine rocky slopes. Field status—common.<br />

Distribution: India (Darjeeling in West Bengal,<br />

Sikkim, Arunachal Pradesh & Nagaland), Nepal,<br />

Bhutan and China (southeastern Xizang).<br />

Specimens examined: 02.iv.2003, Saramati peak,<br />

3700m, coll. S. Panda s.n. (ASSAM).<br />

(xxviii) G. trichophylla Royle: Vegetative. Habit—<br />

procumbent mat-forming dwarf shrub up to 0.1m high.<br />

Habitat—growing along moist alpine rocky slopes.<br />

Field status—common.<br />

Distribution: India: Himalayas (Jammu & Kashmir,<br />

Himachal Pradesh, Uttaranchal, Sikkim, West Bengal<br />

and Arunachal Pradesh) and northeastern India<br />

(Saramati peak <strong>of</strong> Nagaland), Pakistan, Nepal, Bhutan,<br />

southwestern China and northern Myanmar.<br />

Specimens examined: 02.iv.2003, Saramati peak,<br />

3700m, coll. S. Panda s.n. (ASSAM).<br />

(xxix) R. lepidotum Wall. ex G. Don: Corolla<br />

greenish-white. Habit—Dwarf shrub up to 0.3m high.<br />

Habitat—growing along moist alpine rocky slopes.<br />

Field status—common.<br />

Distribution: India: Himalaya (Jammu & Kashmir,<br />

Himachal Pradesh, Uttarakhand, Sikkim, Darjeeling in<br />

West Bengal and Arunachal Pradesh) and northeastern<br />

India (Nagaland), western Pakistan, Nepal, Bhutan,<br />

southwestern China and northeastern Myanmar.<br />

Specimens examined: 02.iv.2003, base Camp to<br />

Saramati peak, ca. 3500m, S. Panda 30896 (CAL).<br />

(xxx) R. anthopogon D. Don: Flower buds<br />

light yellow. Habit—dwarf shrub up to 0.3m high.<br />

Habitat—growing along moist alpine rocky slopes.<br />

Field status—common.<br />

Distribution: India: Himalayas (Uttarakhand,<br />

Sikkim, Darjeeling in West Bengal and Arunachal<br />

Pradesh) and northeastern India (Nagaland), Nepal,<br />

Bhutan and southwestern China.<br />

Specimens examined: 02.iv.2003, base Camp to<br />

Saramati peak, c. 3500m, coll. S. Panda s.n. (CAL).<br />

3460<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461


Ericaceae in Tuensang District<br />

REFERENCES<br />

Anonymous (2009). A Users’ Guide to the IUCN Red List<br />

Website version 1.0 (March 2009) .<br />

Bor, N.L. (1936). A Trans-Frontier Tour in the Naga Hills.<br />

Indian Forester 62: 69–79.<br />

Changkija, S. & Y. Kumar (1997). Forest types <strong>of</strong> Nagaland<br />

and its floristic elements. Higher Plants <strong>of</strong> Indian Subcontinent<br />

6: 127–141.<br />

Hynniewta, T.M. (1994). Botany <strong>of</strong> Mt. Saramati and its<br />

environs. Bulletin <strong>of</strong> the Botanical Survey <strong>of</strong> India 36:<br />

178–188.<br />

Mabberley, D.J. (2008). Mabberley’s plant-book: a portable<br />

dictionary <strong>of</strong> plants: utilizing Kubitzki’s The families and<br />

S. Panda<br />

genera <strong>of</strong> vascular plants (1990) and current botanical<br />

literature, arranged according to the principles <strong>of</strong> molecular<br />

systematic. 3 rd Revised Edition. Cambridge University<br />

Press, Cambridge, 313pp.<br />

Panda, S. (2008). Taxonomic Revision <strong>of</strong> Some Selected<br />

Genera <strong>of</strong> Ericaceae in India. PhD Thesis. Submitted to<br />

Vidyasagar University, Midnapore, 294pp.<br />

Panda, S. & M. Sanjappa (2008). A New Species <strong>of</strong> Vaccinium<br />

L. (Ericaceae) from India. Bulletin <strong>of</strong> the Botanical Survey<br />

<strong>of</strong> India 50: 1–8.<br />

Vie, J.-C., C. Hilton-Taylor & S.N. Stuart (eds.) (2009).<br />

Wildlife in a changing World - An Analysis <strong>of</strong> the 2008<br />

IUCN Red List <strong>of</strong> <strong>Threatened</strong> Species. Gland, Switzerland,<br />

180pp.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3454–3461<br />

3461


JoTT No t e 4(15): 3462–3472<br />

Chasmophytic grasses <strong>of</strong> Velliangiri<br />

Hills in the southern Western Ghats <strong>of</strong><br />

Tamil Nadu, India<br />

Binu Thomas 1 , A. Rajendran 2 , K. Althaf<br />

Ahamed Kabeer 3 & R. Sivalingam 4<br />

1,2,4<br />

Department <strong>of</strong> Botany, School <strong>of</strong> Life Sciences, Bharathiar<br />

University, Coimbatore, Tamil Nadu 641046, India<br />

3<br />

Botanical Survey <strong>of</strong> India, Southern Circle, Coimbatore, Tamil<br />

Nadu 641003, India<br />

Email: 1 binuthomasct@gmail.com, 2 drarajendra@gmail.com,<br />

3<br />

althafgrass@gmail.com, 4 drsivar@gmail.com (corresponding<br />

author)<br />

Rock crevices play a key role in forming a major<br />

habitat for many plants, and host rich biodiversity within<br />

a small area. The rocky habitat provides extremely<br />

harsh physical environment for plants that leads to the<br />

development <strong>of</strong> specialized plant communities with<br />

endemic and habitat specific species. The microhabitat<br />

like rock crevices possess diverse forms <strong>of</strong> plants, which<br />

are mainly seasonal herbs. These habitats differ from<br />

each other due to changes in geographical terrain and<br />

soil cover (Porembski 2000).<br />

Chasmophytes are plants rooted in clefts <strong>of</strong> rocks<br />

that are filled with detritus. In these clefts particles <strong>of</strong><br />

Date <strong>of</strong> publication (online): 26 <strong>December</strong> <strong>2012</strong><br />

Date <strong>of</strong> publication (print): 26 <strong>December</strong> <strong>2012</strong><br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

Editor: N.P. Balakrishnan<br />

Manuscript details:<br />

Ms # o3107<br />

Received 21 February <strong>2012</strong><br />

Final received 14 October <strong>2012</strong><br />

Finally accepted 29 October <strong>2012</strong><br />

Citation: Thomas, B., A. Rajendran, K.A.A. Kabeer & R. Sivalingam (<strong>2012</strong>).<br />

Chasmophytic grasses <strong>of</strong> Velliangiri Hills in the southern Western Ghats <strong>of</strong><br />

Tamil Nadu, India. <strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> 4(15): 3462–3472.<br />

Copyright: © Binu Thomas, A. Rajendran, K. Althaf Ahamed Kabeer & R.<br />

Sivalingam <strong>2012</strong>. Creative Commons Attribution 3.0 Unported License.<br />

JoTT allows unrestricted use <strong>of</strong> this article in any medium for non-pr<strong>of</strong>it<br />

purposes, reproduction and distribution by providing adequate credit to the<br />

authors and the source <strong>of</strong> publication.<br />

Acknowledgements: We are all thankful to Pr<strong>of</strong>essor and Head,<br />

Department <strong>of</strong> Botany, Bharathiar University, Coimbatore and Head <strong>of</strong><br />

Office, Botanical Survey <strong>of</strong> India, Southern Circle, Coimbatore for providing<br />

necessary facilities to carry out the present research.<br />

OPEN ACCESS | FREE DOWNLOAD<br />

Western Ghats<br />

Special Series<br />

earth conveyed by wind and water<br />

accumulate. The amount and rate <strong>of</strong><br />

accumulation depend upon the width<br />

and situation <strong>of</strong> the clefts (Davis<br />

1982). The soil thus constituted<br />

facilitates plants to establish and their dead fragments<br />

further add to the supply <strong>of</strong> the nutritive material in<br />

the clefts (Bashan et al. 2002). The chasmophytic<br />

vegetation inhabiting rock crevices and cliffs represent<br />

specific habitat with extreme ecological conditions such<br />

as extreme drought, temperature fluctuations, width <strong>of</strong><br />

the cliffs, rate <strong>of</strong> accumulation, limited soil volume and<br />

scarce nutrients, nature <strong>of</strong> the rock types, rock hardness<br />

and sediment porosity and water holding capacity <strong>of</strong> the<br />

substratum (Nagy & Proctor 1997; Bashan et al. 2002,<br />

2006).<br />

The grass family occupies 23% <strong>of</strong> the land area <strong>of</strong><br />

the world, playing a significant role in the life <strong>of</strong> human<br />

beings and animals, and has a paramount role as a food<br />

provider, accounting for more than 80% <strong>of</strong> the world’s<br />

calories (Kabeer & Nair 2009). A comprehensive account<br />

<strong>of</strong> the grasses <strong>of</strong> Tamil Nadu was published by Kabeer<br />

& Nair (2009) in their floristic studies. However, there<br />

has been no study <strong>of</strong> chasmophytic features <strong>of</strong> grasses as<br />

yet. A comprehensive study was carried out to assess the<br />

chasmophytic diversity <strong>of</strong> grasses from Velliangiri Hills<br />

<strong>of</strong> southern Western Ghats <strong>of</strong> Tamil Nadu (Fig. 1).<br />

Study area and Methods: Velliangiri Hills are<br />

floristically rich and socio-religiously important<br />

range <strong>of</strong> southern Western Ghats situated 40km west<br />

<strong>of</strong> Coimbatore City, Tamil Nadu. The study area lies<br />

between 6 0 40’–7 0 10’E and 10 0 55’–11 0 10’N between<br />

520–1840 m. A famous temple called ‘Velliangiri<br />

Aandavar’ temple also called “Thenkailayam” (South<br />

Kailas) is situated at the peak <strong>of</strong> the hills (1840m). The<br />

range <strong>of</strong> study area consists <strong>of</strong> seven hills with different<br />

altitudes and topography.<br />

Correct nomenclature, habit, habitat, phenology and<br />

pattern <strong>of</strong> distribution available are given (Table 1). Plant<br />

specimens were identified with regional and local floras<br />

(Gamble & Fischer 1988; Mathew 1983; Chandrabose<br />

& Nair 1988; Henry et al. 1989; Kabeer & Nair 2009).<br />

The voucher specimens are deposited in the herbarium<br />

The publication <strong>of</strong> this article is supported by the Critical Ecosystem<br />

Partnership Fund (CEPF), a joint initiative <strong>of</strong> l’Agence Française<br />

de Développement, Conservation International, the European<br />

Commission, the Global Environment Facility, the Government <strong>of</strong><br />

Japan, the MacArthur Foundation and the World Bank.<br />

3462<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

© Binu Thomas<br />

Image 1. View <strong>of</strong> Velliangiri hill top<br />

Figure 1. Study area<br />

<strong>of</strong> Botany Department, Bharathiar University (BUH),<br />

Coimbatore, Tamil Nadu, India.<br />

Results and Discussion: The data presented here<br />

are the outcome <strong>of</strong> a series <strong>of</strong> extensive and intensive<br />

studies conducted during September 2010–October 2011<br />

had resulted in the documentation and collection <strong>of</strong> 30<br />

species <strong>of</strong> wild chasmophytic grass taxa from Velliangiri<br />

Hills <strong>of</strong> southern Western Ghats <strong>of</strong> Tamil Nadu (Images<br />

1–35).<br />

The present study incorporated 30 species <strong>of</strong><br />

chasmophytic grasses distributed in 26 genera (Table 1).<br />

Among these genera Eragrostis is the dominant genus<br />

with four species, namely, aspera, tenella, nigra and<br />

uniloides. Some <strong>of</strong> the notable chasmophytic grasses<br />

are used by the local tribe ‘Malasars’. The stalks <strong>of</strong><br />

Apluda mutica are used for making hats. Cymbopogon<br />

flexuosus is used to extract the lemon grass oil for<br />

medicinal purposes. Ash <strong>of</strong> Pogonatherum crinitum<br />

are used for skin problems. The spikelets <strong>of</strong> Setaria<br />

palmifolia and Melinus repens are highly attractive<br />

and used ornamentally. Most <strong>of</strong> the grasses are used as<br />

fodder.<br />

Some <strong>of</strong> the threats like heavy influence <strong>of</strong> pilgrims,<br />

recreational pressures, collection <strong>of</strong> fire wood, lack <strong>of</strong><br />

suitable management and other construction activities<br />

adversely affect the existing ecosystem. It is suggested<br />

that the chasmophytic vegetation needs to be protected<br />

through sustainable utilization.<br />

Image 2. Pogonatherum crinitum (Thunb.) Kunth.<br />

Image 3. Melinis repens (Willd.) Zizka<br />

References<br />

© Binu Thomas<br />

© Binu Thomas<br />

Bashan, Y., H. Vierheilig & B.G. Salazar (2006). Primary<br />

colonization and breakdown <strong>of</strong> igneous rocks by endemic<br />

succulent plants <strong>of</strong> the deserts in Baja California, Mexico.<br />

Naturwissenschaften 93: 344–347.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472<br />

3463


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Table 1. Chasmophytic grasses <strong>of</strong> Velliangiri Hills, southern Western Ghats <strong>of</strong> Tamil Nadu<br />

Sno Botanical name (accession number) Habit Habitat Phenology Distribution<br />

1 Apluda mutica L. (BUH: 7298) (Image 6) Tufted perennial<br />

2<br />

3.<br />

4.<br />

5.<br />

Arthraxon hispidus (Thumb.) Makin.<br />

(BUH: 7123) (Image 7)<br />

Arundinella pumila (Hochst. ex A. Rich) Steud.<br />

(BUH: 7126) (Image 8)<br />

Axonopus compressus (Sw.) P. Beauv.<br />

(BUH: 7125) (Image 9)<br />

Capillipedium assimile (Steud.) A. Camus<br />

(BUH: 7142) (Image 10)<br />

6. Cenchrus ciliaris L. (BUH: 7151) (Image 11)<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

29.<br />

30.<br />

Centotheca lappacea (L.) Desv.<br />

(BUH: 7153) (Image 12)<br />

Cryptococcum oxyphyllum (Steud.) Stapf.<br />

(BUH: 7174) (Image 13)<br />

Cymbopogon flexuosus (Nees ex Steud.) Will.<br />

(BUH: 7183) (Image 14)<br />

Cryptococcum trigonum (Retz.) A. Camus<br />

(BUH: 7389) (Image 15)<br />

Eleusine indica (L.) Gaertn.<br />

(BUH: 7297) (Image 16)<br />

Eragrostis aspera (Jacq.) Nees.<br />

(BUH: 7200) (Image 17)<br />

Eragrostis nigra Nees ex Steud.<br />

(BUH: 7203) (Image 18)<br />

Eragrostis tenella (L.) P. Beauv.<br />

(BUH: 7202) (Image 19)<br />

Eragrostis uniloides (Retz.) Nees ex Steud.<br />

(BUH: 7204) (Image 20)<br />

Garnotia arundinacea Hook.<br />

(BUH: 7202) (Image 21)<br />

Heteropogon contortus (L.) P. Beauv.<br />

(BUH: 7220) (Image 22)<br />

Melinis repens (Willd.) Zizka<br />

(BUH: 7267) (Image 23)<br />

Oplismenus compositus (L.) P. Beauv.<br />

(BUH: 7275) (Image 24)<br />

Panicum curviflorum Hornem. (Samaikarunai)<br />

(BUH: 7281) (Image 25)<br />

Paspalidium flavidum (Retz.) A. Camus<br />

(BUH: 7282) (Image 26)<br />

Pennisetum polystachion (L.) Schult.<br />

(BUH: 7286) (Image 27)<br />

Pogonatherum crinitum (Thunb.) Kunth. (BUH:<br />

7310) (Image 28)<br />

Rottboellia cochinchinensis (Lour.) Clayton<br />

(BUH: 7325) (Image 29)<br />

Setaria palmifolia (J. Koenig) Stapf.<br />

(BUH: 7333) (Image 30)<br />

Sorghum halepense (L.) Pers.<br />

(BUH: 7337) (Image 31)<br />

Spodiopogon rhizophorus (Steud.) Pilger<br />

(BUH: 7202) (Image 32)<br />

Sporobolus indicus (L.) R. Br. var. flaccidus<br />

(Roem & Schult) (BUH: 7341) (Image 33)<br />

Themeda triandra Forssk. (Erigaithattuppullu)<br />

(BUH: 7341) (Image 34)<br />

Zenkeria elegans Trin. (Kallubothai)<br />

(BUH: 7362) (Image 35)<br />

Tufted annual<br />

Rock crevices <strong>of</strong> hill slopes up<br />

to 1700m<br />

Rock crevices <strong>of</strong> hill slopes up to<br />

1800m.<br />

Throughout<br />

the year<br />

Apr–Feb<br />

Common<br />

Tufted annual On dripping rocks Nov–Mar Rare<br />

Uncommon<br />

Perennial grass Rock crevices up to 1500m Jun–Feb Common<br />

Tufted perennial Cliffs <strong>of</strong> hill slopes 900–1800 m Oct–Mar Uncommon<br />

Stoloniferous<br />

perennial<br />

Decumbent<br />

perennial<br />

Tufted perennial<br />

Moist places <strong>of</strong> rocky cliffs<br />

Throughout<br />

the year<br />

Common<br />

Moist shaded places <strong>of</strong> hilly cliffs Apr–Nov Uncommon<br />

Rock crevices <strong>of</strong> forest floor up<br />

to 1400m<br />

Jul–Apr<br />

Uncommon<br />

Tufted perennial Grassland rocky cliffs at 1700m Jul–Apr Common<br />

Stoloniferous<br />

perennial<br />

Tufted annual<br />

Cliffs <strong>of</strong> moist shady places Jul–Apr Uncommon<br />

Rocky cliffs at 600–800 m<br />

Throughout<br />

the year<br />

Annual Rocky cliffs <strong>of</strong> hill slopes Nov–Feb Rare<br />

Uncommon<br />

Tufted perennial Rock crevices <strong>of</strong> marshy areas June–Mar Uncommon<br />

Tufted annual<br />

Tufted annual<br />

Tufted annual<br />

Tufted perennial<br />

Tufted annual<br />

Rocky cliffs <strong>of</strong> foot hills<br />

Rock crevices <strong>of</strong> marshy areas<br />

Rock crevices <strong>of</strong> open areas at<br />

about 1500m<br />

Rock crevices <strong>of</strong> hills at about<br />

400–600 m<br />

Rocky cliffs <strong>of</strong> open dry areas at<br />

about 600–800 m<br />

Throughout<br />

the year<br />

Throughout<br />

the year<br />

Jul–Feb<br />

Throughout<br />

the year<br />

Throughout<br />

the year<br />

Uncommon<br />

Uncommon<br />

Uncommon<br />

Common<br />

Common<br />

Creeping annual Rocky cliffs <strong>of</strong> shaded areas Jul–Mar Common<br />

Tufted annual<br />

Rocky cliffs <strong>of</strong> grass lands at<br />

about 1300m<br />

May–Feb<br />

Common<br />

Tufted annual Moist shady places <strong>of</strong> rocky cliffs May–Mar Uncommon<br />

Tufted annual<br />

Tufted annual<br />

Tufted perennial<br />

Rocky cliffs <strong>of</strong> marshy areas at<br />

1250m<br />

Rocky cliffs <strong>of</strong> hill slopes at<br />

1200m<br />

Rocky cliffs along streams at<br />

1200m<br />

Jul–Apr<br />

May–Mar<br />

Throughout<br />

the year<br />

Uncommon<br />

Common<br />

Uncommon<br />

Tufted perennial Rocky cliffs <strong>of</strong> marshy areas Jul–Apr Uncommon<br />

Rhizomatous<br />

perennial<br />

Tufted annual<br />

Tufted annual<br />

Rock crevices <strong>of</strong> hills at about<br />

600–800 m<br />

Rocky cliffs along hill slopes at<br />

1300m<br />

Rocky cliffs <strong>of</strong> forest floor at<br />

600–800 m<br />

Oct–Jan<br />

Nov–Dec<br />

May–Mar<br />

Common<br />

Uncommon<br />

Common<br />

Tufted perennial Rocky cliffs <strong>of</strong> hill slopes May–Mar Common<br />

Tufted rhizomatous<br />

perennial<br />

Massive clumps in rocky areas<br />

at 1700m<br />

Jun–Jan<br />

Uncommon<br />

3464<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 4. Sporobolus indicus (L.) R. Br. var. flaccidus<br />

© Binu Thomas<br />

© Binu Thomas<br />

Image 5. Arundinella pumila (Hochst. ex A. Rich.) Steud.<br />

Image 6. Apluda mutica L.<br />

Bashan, Y., C.Y. Li., V.K. Lebsky & M. Monero (2002).<br />

Colonization <strong>of</strong> chasmophytic plants in arid Baja California,<br />

Mexico. Plant Biology 4: 392–402.<br />

Chandrabose, M. & N.C. Nair (1988). Flora <strong>of</strong> Coimbatore.<br />

Botanical Survey <strong>of</strong> India, Coimbatore, 322–356pp.<br />

Davis, P.H. (1982). Cliff vegetation in the Eastern Mediterranean.<br />

<strong>Journal</strong> <strong>of</strong> Ecology 39: 63–93.<br />

Henry, A.N., V. Chitra & N.P. Balakrishnan (1989). Flora <strong>of</strong><br />

Tamil Nadu. Analysis—Volume 3. Botanical Survey <strong>of</strong> India,<br />

87–146pp.<br />

Kabeer, K.A.A. & V.J. Nair (2009). Flora <strong>of</strong> Tamil Nadu -<br />

Image 7. Arthraxon hispidus (Thunb.) Makin.<br />

Grasses. Botanical Survey <strong>of</strong> India, Calcutta, 1–525pp.<br />

Mathew, K.M. (1983). The Flora <strong>of</strong> The Tamilnadu Carnatic—<br />

Volumes 1–3. The Rapinat Herbarium, St. Joseph’s college,<br />

Thiruchirapalli, 1789–1915pp.<br />

Nagy, L. & J. Proctor (1997). Soil Mg and Ni as casual factors<br />

<strong>of</strong> plant occurrence and distribution at the Meikle Kilrannoch<br />

Ultramafic site in Scotland. New Phytology 135: 561–566.<br />

Porembski, S. (2000). Biotic diversity <strong>of</strong> isolated rock outcrops<br />

in tropical and temperate regions. <strong>Journal</strong> <strong>of</strong> Ecology 146:<br />

177–208.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472<br />

3465


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 8. Arundinella pumila (Hochst. ex A. Rich.) Steud.<br />

Image 9. Axonopus compressus (Sw.) P. Beauv.<br />

Image 10. Capillipedium assimile (Steud.) A. Camus Image 11. Cenchrus ciliaris L.<br />

3466<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 12. Centotheca lappacea (L.) Desv.<br />

Image 13. Cryptococcum oxyphyllum (Steud.) Stapf<br />

Image 14. Cymbopogon flexuosus (Nees ex Steud.) Will.<br />

Image 15. Cryptococcum trigonum (Retz.) A. Camus<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472<br />

3467


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 16. Eleusine indica (L.) Gaertn.<br />

Image 17. Eragrostis aspera (Jacq.) Nees<br />

Image 19. Eragrostis tenella (L.) P. Beauv.<br />

Image 18. Eragrostis nigra Nees ex Steud.<br />

3468<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 20. Eragrostis uniloides (Retz.) Nees ex Steud.<br />

Image 21. Garnotia arundinacea Hook.<br />

Image 22. Heteropogon contortus (L.) P. Beauv.<br />

Image 23. Melinis repens (Willd.) Zizka<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472<br />

3469


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 24. Oplismenus compositus (L.) P. Beauv.<br />

Image 25. Panicum curviflorum Hornem.<br />

Image 26. Paspalidium flavidum (Retz.) A. Camus<br />

Image 27. Pennisetum polystachion (L.) Schult.<br />

3470<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 28. Pogonatherum crinitum (Thunb.) Kunth.<br />

Image 29. Rottboellia cochinchinensis (Lour.) Clayton<br />

Image 30. Setaria palmifolia (J. Koenig) Stapf.<br />

Image 31. Sorghum halepense (L.) Pers.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472<br />

3471


Chasmophytic grasses <strong>of</strong> Velliangiri Hills<br />

B. Thomas et al.<br />

Image 32. Spodiopogon rhizophorus (Steud.) Pilger<br />

Image 33. Sporobolus indicus (L.) R. Br. var. flaccidus<br />

(Roem. & Schult.)<br />

Image 34. Themeda triandra Forssk.<br />

Image 35. Zenkeria elegans Trin.<br />

3472<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> | www.threatenedtaxa.org | <strong>December</strong> <strong>2012</strong> | 4(15): 3462–3472


Dr. Ullasa Kodandaramaiah, Cambridge, UK<br />

Dr. Pankaj Kumar, Tai Po, Hong Kong<br />

Dr. Krushnamegh Kunte, Cambridge, USA<br />

Pr<strong>of</strong>. Dr. Adriano Brilhante Kury, Rio de Janeiro, Brazil<br />

Dr. P. Lakshminarasimhan, Howrah, India<br />

Dr. Carlos Alberto S de Lucena, Porto Alegre, Brazil<br />

Dr. Glauco Machado, São Paulo, Brazil<br />

Dr. Volker Mahnert, Douvaine, France<br />

Dr. Gowri Mallapur, Mamallapuram, India<br />

Dr. George Mathew, Peechi, India<br />

Dr. Rudi Mattoni, Buenos Aires, Argentina<br />

Pr<strong>of</strong>. Richard Kiprono Mibey, Eldoret, Kenya<br />

Dr. Lionel Monod, Genève, Switzerland<br />

Dr. Shomen Mukherjee, Jamshedpur, India<br />

Dr. Shomita Mukherjee, Coimbatore, India<br />

Dr. Fred Naggs, London, UK<br />

Dr. P.O. Nameer, Thrissur, India<br />

Dr. D. Narasimhan, Chennai, India<br />

Dr. T.C. Narendran, Kozhikode, India<br />

Mr. Stephen D. Nash, Stony Brook, USA<br />

Dr. K.S. Negi, Nainital, India<br />

Dr. K.A.I. Nekaris, Oxford, UK<br />

Dr. Tim New, Melbourne, Australia<br />

Dr. Heok Hee Ng, Singapore<br />

Dr. Boris P. Nikolov, S<strong>of</strong>ia, Bulgaria<br />

Pr<strong>of</strong>. Annemarie Ohler, Paris, France<br />

Dr. Shinsuki Okawara, Kanazawa, Japan<br />

Dr. Albert Orr, Nathan, Australia<br />

Dr. Geeta S. Padate, Vadodara, India<br />

Dr. Larry M. Page, Gainesville, USA<br />

Dr. Arun K. Pandey, Delhi, India<br />

Dr. Prakash Chand Pathania, Ludhiana, India<br />

Dr. Malcolm Pearch, Kent, UK<br />

Dr. Richard S. Peigler, San Antonio, USA<br />

Dr. Rohan Pethiyagoda, Sydney, Australia<br />

Mr. J. Praveen, Bengaluru, India<br />

Dr. Mark R Stanley Price, Tubney, UK<br />

Dr. Robert Michael Pyle, Washington, USA<br />

Dr. Muhammad Ather Rafi, Islamabad, Pakistan<br />

Dr. H. Raghuram, Bengaluru, India<br />

Dr. Dwi Listyo Rahayu, Pemenang, Indonesia<br />

Dr. Sekar Raju, Suzhou, China<br />

Dr. Vatsavaya S. Raju, Warangal, India<br />

Dr. V.V. Ramamurthy, New Delhi, India<br />

Dr (Mrs). R. Ramanibai, Chennai, India<br />

Pr<strong>of</strong>. S.N. Ramanujam, Shillong, India<br />

Dr. Alex Ramsay, LS2 7YU, UK<br />

Dr. M.K. Vasudeva Rao, Pune, India<br />

Dr. Robert Raven, Queensland, Australia<br />

Dr. K. Ravikumar, Bengaluru, India<br />

Dr. Luke Rendell, St. Andrews, UK<br />

Dr. Heidi Riddle, Greenbrier, USA<br />

Dr. Anjum N. Rizvi, Dehra Dun, India<br />

Dr. Leif Ryvarden, Oslo, Norway<br />

Pr<strong>of</strong>. Michael Samways, Matieland, South Africa<br />

Dr. Yves Samyn, Brussels, Belgium<br />

Dr. V. Shantharam, Chittor, India<br />

Pr<strong>of</strong>. S.C. Santra, Kalyani, India<br />

Dr. Asok K. Sanyal, Kolkata, India<br />

Dr. K.R. Sasidharan, Coimbatore, India<br />

Mr. Kumaran Sathasivam, Madurai, India<br />

Dr. S. Sathyakumar, Dehradun, India<br />

Dr. M.M. Saxena, Bikaner, India<br />

Dr. Hendrik Segers, Vautierstraat, Belgium<br />

Dr. R. Siddappa Setty, Bengaluru, India<br />

Dr. Subodh Sharma, Towson, USA<br />

Pr<strong>of</strong>. B.K. Sharma, Shillong, India<br />

Pr<strong>of</strong>. K.K. Sharma, Jammu, India<br />

Dr. R.M. Sharma, Jabalpur, India<br />

Dr. Tan Koh Siang, Kent Ridge Road, Singapore<br />

Dr. Arun P. Singh, Jorhat, India<br />

Dr. Lala A.K. Singh, Bhubaneswar, India<br />

Dr. K.G. Sivaramakrishnan, Chennai, India<br />

Pr<strong>of</strong>. Willem H. De Smet, Wilrijk, Belgium<br />

Mr. Peter Smetacek, Nainital, India<br />

Dr. Brian Smith, Iverson Blvd, USA<br />

Dr. Humphrey Smith, Coventry, UK<br />

Dr. Hema Somanathan, Trivandrum, India<br />

Dr. C. Srinivasulu, Hyderabad, India<br />

Dr. Ulrike Streicher, Danang, Vietnam<br />

Dr. K.A. Subramanian, Pune, India<br />

Mr. K.S. Gopi Sundar, New Delhi, India<br />

Dr. P.M. Sureshan, Patna, India<br />

Pr<strong>of</strong>. R. Varatharajan, Imphal, India<br />

Dr. Karthikeyan Vasudevan, Dehradun, India<br />

Dr. R.K. Verma, Jabalpur, India<br />

Dr. W. Vishwanath, Manipur, India<br />

Dr. Francesco Vitali, rue Münster, Luxembourg<br />

Dr. E. Vivekanandan, Cochin, India<br />

Dr. Gernot Vogel, Heidelberg, Germany<br />

Dr. Dave Waldien, Austin, USA<br />

Dr. Ted J. Wassenberg, Cleveland, Australia<br />

Dr. Stephen C. Weeks, Akron, USA<br />

Pr<strong>of</strong>. Yehudah L. Werner, Jerusalem, Israel<br />

Mr. Nikhil Whitaker, Mamallapuram, India<br />

Dr. Andreas Wilting, Berlin, Germany<br />

Dr. Hui Xiao, Chaoyang, China<br />

Dr. April Yoder, Little Rock, USA<br />

Dr. Nathalie Yonow, Swansea, UK<br />

English Editors<br />

Mrs. Mira Bhojwani, Pune, India<br />

Dr. Fred Pluthero, Toronto, Canada<br />

<strong>Journal</strong> <strong>of</strong> <strong>Threatened</strong> <strong>Taxa</strong> is indexed/abstracted<br />

in Bibliography <strong>of</strong> Systematic Mycology, Biological<br />

Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO,<br />

Google Scholar, Index Copernicus, Index Fungorum,<br />

<strong>Journal</strong>Seek and Zoological Records.<br />

NAAS rating (India) 4.5


Jo u r n a l o f Th r e a t e n e d Ta x a<br />

ISSN 0974-7907 (online) | 0974-7893 (print)<br />

<strong>December</strong> <strong>2012</strong> | Vol. 4 | No. 15 | Pages 3377–3472<br />

Date <strong>of</strong> Publication 26 <strong>December</strong> <strong>2012</strong> (online & print)<br />

Communication<br />

Pollination biology <strong>of</strong> the crypto-viviparous Avicennia<br />

species (Avicenniaceae)<br />

-- A.J. Solomon Raju, P.V. Subba Rao, Rajendra Kumar &<br />

S. Rama Mohan, Pp. 3377–3389<br />

Short Communications<br />

Philodendron williamsii Hook. f. (Araceae), an endemic<br />

and vulnerable species <strong>of</strong> southern Bahia, Brazil used<br />

for local population<br />

-- Luana S.B. Calazans, Erica B. Morais & Cassia M.<br />

Sakuragui, Pp. 3390–3394<br />

Sonneratia ovata Backer (Lythraceae): status and<br />

distribution <strong>of</strong> a Near <strong>Threatened</strong> mangrove species<br />

in tsunami impacted mangrove habitats <strong>of</strong> Nicobar<br />

Islands, India<br />

-- P. Nehru & P. Balasubramanian, Pp. 3395–3400<br />

Status, threats and conservation strategies for orchids<br />

<strong>of</strong> western Himalaya, India<br />

-- Jeewan Singh Jalal, Pp. 3401–3409<br />

Conservation status <strong>of</strong> Dendrobium tenuicaule Hook. f.<br />

(Orchidaceae), a Middle Andaman Island endemic, India<br />

-- Boyina Ravi Prasad Rao, Kothareddy Prasad, Madiga<br />

Bheemalingappa, Mudavath Chennakesavulu Naik, K.N.<br />

Ganeshaiah & M. Sanjappa, Pp. 3410–3414<br />

Endemic orchids <strong>of</strong> peninsular India: a review<br />

-- Jeewan Singh Jalal & J. Jayanthi, Pp. 3415–3425<br />

Ecology and conservation status <strong>of</strong> canebrakes in<br />

Warangal District <strong>of</strong> Andhra Pradesh, India<br />

-- Sateesh Suthari & Vatsavaya S. Raju, Pp. 3426–3432<br />

Notes<br />

Recollection <strong>of</strong> a rare epiphytic orchid Taeniophyllum<br />

filiforme J.J. Sm. (Orchidaceae) after a lapse <strong>of</strong> 135<br />

years from South Andaman Islands, India<br />

-- K. Karthigeyan, R. Sumathi & J. Jayanthi, Pp. 3433–3435<br />

CEPF Western Ghats Special Series<br />

Validation and documentation <strong>of</strong> rare endemic and<br />

threatened (RET) plants from Nilgiri, Kanuvai and<br />

Madukkarai forests <strong>of</strong> southern Western Ghats, India<br />

-- K.M. Prabhu Kumar, V. Sreeraj, Binu Thomas, K.M.<br />

Manudev & A. Rajendran, Pp. 3436–3442<br />

Ethnobotanical value <strong>of</strong> dry, fallen ovaries <strong>of</strong> Bombax<br />

ceiba L. (Bombacaceae: Malvales)<br />

-- S. Gopakumar & R. Yesoda Bai, Pp. 3443–3446<br />

A report <strong>of</strong> the threatened plant Decalepis hamiltonii<br />

Wight & Arn. (Asclepiadaceae) from the mid elevation<br />

forests <strong>of</strong> Pachamalai Hills <strong>of</strong> the Eastern Ghats, Tamil<br />

Nadu, India<br />

-- V. Anburaja, V. Nandagopalan, S. Prakash & A. Lakshmi<br />

Prabha, Pp. 3447–3449<br />

Note on Celastrus paniculatus Willd. ssp. aggregatus<br />

K.M. Matthew ex K.T. Matthew (Celastraceae)<br />

-- J.W. Francis, M.M. Dandu, M.M. Sardesai & A.S. Dhabe,<br />

Pp. 3450–3453<br />

Checklist <strong>of</strong> Ericaceae in Tuensang District <strong>of</strong> Nagaland,<br />

India with special reference to Mt. Saramati<br />

-- S. Panda, Pp. 3454–3461<br />

CEPF Western Ghats Special Series<br />

Chasmophytic grasses <strong>of</strong> Velliangiri Hills in the<br />

southern Western Ghats <strong>of</strong> Tamil Nadu, India<br />

-- Binu Thomas, A. Rajendran, K. Althaf Ahamed Kabeer &<br />

R. Sivalingam, Pp. 3462–3472<br />

Creative Commons Attribution 3.0 Unported License. JoTT allows unrestricted use <strong>of</strong> articles in any medium<br />

for non-pr<strong>of</strong>it purposes, reproduction and distribution by providing adequate credit to the authors and the<br />

source <strong>of</strong> publication.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!