Diversity and Conservation of Orchids Along the Ecological Tourism Route of Lum-Nam Nan and Klongtron National Park, Uttaradit

Ratchanee Petchang^a

^aDepartment of Biology, Faculty of Science and Technology, Uttaradit Rajabhat University

*Corresponding Author. E-mail address: rpetchang@hotmail.com

Received 26 February 2010; accepted 15 August 2010

Abstract

Taxonomic survey of Thai wild orchids was performed at along the ecological tourism route of Lum–Nam Nan National Park and Klongtron National Park and to conserve orchids by culturing onto a suitable synthetic medium composed of local materials. A survey of orchids along the area of five meters around the ecological tourism route in a distance of about 21 kilometers was made from December 2005 to February 2009. The taxa of orchids found in this National Park were terrestrial, epiphytic and lithophytic orchids. They belonged to 5 subfamilies, 25 genera and 68 species and could be classified into Cypripedioideae 1 genus 1 species, Neottioideae 1 genus 1 species, Orchidioideae 1 genus 2 species, Epidendroideae 11 genera 49 species and Vandoideae 10 genera 15 species. They were grown at 1,100-1,400 meters above mean sea level. The length of stems and the number of shoots of *D. formosum* Roxb.ex Lindl. grown in the formula 3 medium (0.15%(w/v) fertilizer 21-21-21, 0.15%(v/v) vitamin B complex, 7.5%(w/v) Banana puree and adjust pH 5 by 15%(v/v) Pineapple juice). Experiments were statistically significant difference which it was higher than others treatments including Vaccine and Went. The conservation of 7 orchids were performed by bringing three years old grown orchids from seeds culturing back along the ecological tourism route of the National Park by pilot tourists and community organizing in the Park.

Keywords: Diversity/Conservation of Orchids, Lum-Num-Nan, Klong-tron National Park

INTRODUCTION

Orchids are the cash flowers producing annual incomes of 2,600 million bath for Thailand (Tammasiri , 2004). Orchids are interesting flowers with various colours, smells and shapes. There were about 35,000 species in the world (Dressler, 1981). According to the orchids survey in 2001 by Thai and Danish taxonomists, there were 1,125 species of wild orchids which belong to 117genera in Thailand. It found in every province. Northern Thai region comprises 437 species and 385 in the South but only 52 in the central part. A great deal of deforestation causes the lower amount of orchids to the critical point of Thailand (Thaitong, 1999). Lum Nam Nan National Park (Fig.1) was ranked 87th in 1999. It consists of a variety of forest types such as deciduous dipterocarp forest, mixed deciduous forest, hill evergreen forest, tropical evergreen forest and savanna forest (Fig.2) thick and sparse forests covering complicated mountainous areas of Muang district of Phrae and Tapla, Nampad of Uttaradit. The height of the mountains ranged 400 - 1,200 meters above mean sea level (AMSL.),

and the heighest one is Phu-Phaya-Por which is the original water source of many waterways in both Phrae and Uttaradit (Lum Nam Nan National Park, 2007). In 2004, Klong Tron National Park was ranked 103rd. It is located in Uttaradit containing thick forest with natural outstanding of 1,500 meters AMSL. Cliff of Phu-Mieng (Klong-Tron National Park, 2007). Because these two National Parks are fairly new and from the documentation reviewed so far, there were no reports on the survey and classification of orchids in this area. At present, this park has been opened to the public, and people have used this Park for sightseeing and for making use of forest products. Transaction of wild orchids from National Park is one of the methods that could reduce the number and type of orchid species in the park. Therefore, to conserve orchids was to culture the seeds of orchids found in a suitable synthetic medium using local materials. It is necessary to study the diversity and conservation of orchids performed by bringing three years old orchids from seeds culturing back along the ecological tourism route of the National Park by pilot tourists and community organizing in the Park.

(b)

Figure 1 (a) The map of Lum Nam Nan and Klong Tron National Park

(b) The position of Phu-paya-por in Lum Nam Nan and Phumiang in Klong - Tron National Park at Uttaradit

Figure 2 Forest Types in National Park at Uttaradit

Materials and Methods

The methodology to survey the diversity of orchids along the ecological tourism route covering 21 kilometres long and 5 meters wide. The characteristic of the orchids were recorded in details as stems, leaves and flowers. Photographing, number tagging and positioning location by GPS was also recorded. To identify the orchid species, the flowers of orchids found were compared with the photographs of Thai orchids that had been identified (Thaithong,2003) and the dichotomous key along the subfamily of Dressler,1981 were used to define the orchids in genera (Seidentaden, 1975 a,b,c.,1976a., 1977a., 1978a,b.,1979).

The method to conserve orchids was to culture the seeds of orchids found in a suitable synthetic medium using local materials. The formula for suitable synthetic medium from local materials was figured out from the ingredients and amount as in 0.15-0.2% (w/v) fertilizer formulas 21-21-21, 0.15-0.2% (v/v) Vitamin B complex, 15% (v/v) Sweet potato juice, 7.5% (w/v) Banana puree (*Musa sapientum* Linn.), 15%(v/v) Coconut juice, 3-3.3% (w/v) Sucrose and 0.65% (w/v) Agar, adjust pH 5 by 15% (v/v) Pineapple juice up totally to 6 formulas by varies concentration of 0.15% and 0.2% (w/v) Vitamin B complex, and 3% and 3.3% (w/v) Sucrose. The growth

and number of orchid shoots cultured in the suitable synthetic medium were compared with those of the Vaccine and Went medium. The growth and shoot number were measured on the 6^{th} week. The growth comparison of each treatment was statistically analyzed using the Duncan's multiple rang test. The conservation of orchids performed by bringing three years old orchids from seeds culturing back along the ecological tourism route of the National Park by pilot tourists and community organizing in the Park.

Results and Discussion

The orchid diversity along the ecological tourism route consists of terrestrial, epiphytic and lithophytic orchids. They belong to 5 subfamilies, 25 genera and 68 species and could be classified into **Cypripedioideae** 1 genus 1 species.,**Neottioideae** 1genus 1 specie., **Orchidioideae** 1 genus 2 species., **Epidendroideae** 12 generas 49 species and **Vandoideae** 10 genera, 15 species (Table 1, Fig.3). The reason that several types of environment in the National Park affected the niche of orchid found which were terrestrial, epiphytic and lithophytic orchid. The terrestrial orchids were found at 627-767 meters above mean sea level. The epiphytic orchids were found at 627-1,564 meters above mean sea level. The lithophytic orchid were found at 1,089 -1,181 meters above mean sea level. Due to the variety of forest types at National Park, orchids were found in 68 species and each species found was in high numbers.

The reason that orchids around here had a high diversity was because of high moisture levels due to 8 waterfalls in the area and the intensity of light was most suitable for the growth and development of these orchids (Chakrit,1959). They grew mostly on the cliff at 1,100-1,400 meters above mean sea level (AMSL.). (Fig.4)

The shoot numbers and high of orchids on the suitable synthetic medium showed that the height of orchid treatment formula 3 were statistically different higher than (*D. formosum* Roxb.ex Lindl.) the other treatments including Vaccine and Went (Table 2). The reason that medium treatment formulas 3 compared to the growth of other treatments including Vaccine and

Went which was due to the lesser amount of sugar, fertilizer and vitamin B complex. It was assumed that this concentration was suitable for the growth of wild orchids from this area. This result corresponded to the finding of Coffin (Coffin *et al.*, 1976) who said that the sugar concentration was from 20–60 g/l, vitamin B_1 , vitamin B_2 and vitamin B_3 , were in the range from 0.1–5 mg/l and vitamin B_5 was in the range of 0.1–2.5 mg/l. (Trigiano & Gray, 2000)

To conserve the orchid germ lines, orchid pods of D. primulinum Lindl., B.morphologorum Krzl., Eulophia spectabillis(Dennst.)Suresh., D. draconis Rchb.f., C.lactea Rchb.f., C. cumingii Lindl. and D. formosum Roxb. ex Lindl., that grew on the formula 3 synthetic medium treatment were brought back along the ecological tourism route of National Park by pilot tourists and community organizing in the Park (Fig. 5).

Table I Name list of orchids in National Park.

Orchid	Habitat	Flowering periods
Subfamily : Cypripedioideae	Mixed deciduous forest	The hole year
Paphiopedilum concolor (Lindl.)		
Pfitzer.		
Subfamily : Neottioideae		
Nervilia crocifermis (Zoll.	Dry evergreen forest	May-June
&Mor.) Seidenf.		
Subfamily : Orchidioideae		
Habenaria thallandica Seidenf.	Evergreen forest	May-June
H. dentata (Sw.) Schltr.	Evergreen forest	August-October
Subfamily : Epidendroideae		
Bulbophyllum intricatum Seidenf.	Evergreen forest	October-November
B. siamense Rchb. f.	Evergreen forest	November-December
B. morphologorum Krzl.	Dry evergreen forest	January-May
B. wallichii Rchb. f.	Dry evergreen forest	January- February
B. tripaleum Seidenf.	Evergreen forest	October-November
B. blepharites Rchb. f.	Mixed deciduous forest	September-October
B. reclusum Seidenf.	Evergreen forest	September-October
B. khasyanum Griff.	Dry evergreen forest	December
B. bittenerianum Schltr.	Evergreen forest	July- August
B. microtepalum Rchb. f.	Hill evergreen forest	November- January
Coelogyne brachyptera Rchb. f.	Evergreen forest	March-April
C. trinervis Lindl.	Dry evergreen forest	September-November
C. lactea Rchb. f.	Dry dipterocarb forest	February- March
C. cumingii Lindl.	Dry dipterocarb forest	May-June
C. viscasa Rchb. f.	Dry evergreen forest	December-January
C. nitida (Wall.mss.) Lindl.	Hill evergreen forest	May-June
C. fuscescens var. brunnea (Lindl.)	Dipterocarb forest	September-October

Table I (continuous)

Orchid	Habitat	Flowering periods
C. schilleriana Rchb. f.	Evergreen forest	December- March
D. Dendrobium aphyllum (Roxb.)	Dry evergreen forest	March- April
Fischer		
D. chrysotoxum Lindl.	Dry evergreen forest	March- April
C. devonianum Paxt.	Dry evergreen forest	March- July
D. draconis Rchb. f.	Mixed deciduous forest	March- April
D. finlayanum Par. & Rchb. f.	Dry evergreen forest	January - March
D. infundibulum Lindl.	Dry evergreen forest	June- August
D. lindleyi Steud.	Dry evergreen forest	February- April
D. palpebrae Lindl.	Mixed deciduous and	February-March
	Dry evergreen forest	
D. thyrsiflorum Rchb. f.	Evergreen forest	January- March
	Mined desidences and Dee	Mary Laws
D. delacouril Guill.	wirzed deciduous and Dry	May- June
D primulinum Lindl	Mixed desiduous	March April
D. printumum Lindi.	whited deciduous	March- April
	Evergreen forest	March Juna
D. cariniferum Rchb. f.	Evergreen forest	March-Julie
	Mixed deciduous and	February-April
D. puchellum Roxb. ex Lindl.	Dry evergreen forest	
D. ellipsophyllum Tang & Wang	Dry evergreen forest	June- August
Drymoda siamensis Schltr.	Dry evergreen forest	February-March
Eria pannea Lindl.	Dry evergreen forest	February-March
E. amica Rchb. f.	Dry evergreen forest	February
E. bractescens Lindl.	Dry evergreen forest	November
Liparis regnieri Finet.	Evergreen forest	June- August
L. sutepensis. Rolfe ex Downie.	Evergreen forest	June- July
Malaxis acuminata D. Don.	Evergreen forest	June- August
M. latifolia J. E. Sn.	Evergreen forest	June- August
Oberonia acaulis Griff.	Evergreen forest	July- September
Phaius tankervilleae Blume.	Evergreen forest	January - March
Pholidota articulata Lindl.	Evergreen forest	March- June
P. recurva Lindl.	Evergreen forest	September – Octobe
P. imbricate Hook.	Evergreen forest	October
Porpax ustulata Rolfe.	Evergreen forest	July- August
P.elwesii (Rchb. f.) Rolfe.	Evergreen forest	September – Octobe
Thunia alba (Lindl.) Rchb. f.	Evergreen forest	- Mav- June

Table I (continuous

Orchid	Habitat	Flowering periods	
Subfamily : Vandoideae			
Aerides falcata Lindl.	Evergreen forest	March - April	
A. odorata Lour.	Evergreen forest	March - April	
A. multiflora Roxb.	Mixed deciduous and Dry evergreen forest	March - April	
A. crassifolia Parish ex Burbidge.	Mixed deciduous and Dry evergreen forest	March - April	
Cleisostoma simondii (Gagnep.)	Mixed deciduous and Dry	March - June	
Seidenf.	evergreen forest		
Cymbidium bicolor Lindl.	Mixed deciduous forest	March - April	
Eulophia spectabilis (Dennst.)	Mixed deciduous forest	March - June	
Suresh.			
E.macrobulbon(Par. & Rchb.f.)	Mixed deciduous forest	February- March	
Hook.f.			
Gastrochilus bigibbus (Rchb.f.	Dry evergreen forest	February- March	
ex Hook.f.) Kze.			
Luisia thailandican. Seidenf.	Mixed deciduous forest	March - April	
Ornithochilus difformis (Will.	Dry evergreen forest	April-July	
ex Lindl.) Schltr.			
Rhynchostylis coelestris Rchb. f.	Dry evergreen forest	April-July	
R. retusa (L) Blume.	Dry evergreen forest	April-July	
Robiquetia succisa Lindl.	Dry evergreen forest	April-July	
Thrixspermum acuminatissimum	Hill evergreen forest	September - October	
(Blume) Rchb. f.			

Figure 3 Some orchids in National Park at Uttaradit.

(a) Bulbophyllum tripaleum Seiden f. (b) Dendrobium senile Par. & Rchb. f. (c) Gastrochilus bigibbus Rchb.f. ex Hook.f. (d) Drymoda siamensis Schltr. (e) Porpax ustulata (Par. & Rchb.f.) Rolfe. (f) Propax elwesii (Rchb.f.) Rolfe (g) Eria bractescens Lindl.(h) B. bittenerianum Schltr. (i) Rhynchostylis retusa (L.) Blume (j) Coelogyne fuscescens var. brunnea (Lindl.) (k) B. siamense Rchb.f. and (l) B. khasyanum Griff.

Figure 4 Number tagging and positioning location by GPS (a) Klong-tron and (b) Lum Nam Nan National Park

Treatment	D. primulinum Lindl.		B. morphologorum F.Kranzl.		Eulophia spectabillis (Dennst.) Suresh.		D. dracoris Rchb.f.	
	shoot	high	shoot	high	shoot	high	shoot	high
1	1.67 ± 0.35	0.48 ± 0.20	2.33 ± 0.25	0.56 ± 0.58	3.17 ± 0.58	0.46 ± 0.09	2.37 ± 0.45	0.45 ± 0.24
2	0.83 ± 0.34	0.42 ± 0.13	3.17 ± 0.50	0.56 ± 0.50	2.80 ± 0.53	0.37 ± 0.07	2.33 ± 0.53	0.53 ± 0.30
3	$1.92{\pm}0.63$	0.23 ± 0.07	3.33 ± 0.48	$0.41 {\pm} 0.26$	3.67 ± 0.37	0.55 ± 0.08	2.43 ± 0.55	$0.51 {\pm} 0.43$
4	1.42 ± 0.60	0.50 ± 0.05	2.33 ± 0.45	0.48 ± 0.19	3.42 ± 0.35	0.43 ± 0.05	2.17 ± 0.33	0.43±0.16
5	0.83 ± 0.34	0.25 ± 0.07	2.17 ± 0.23	0.56 ± 0.10	3.42 ± 0.17	0.48 ± 0.06	2.08 ± 0.31	0.51 ± 0.17
VW	0.67 ± 0.18	0.25 ± 0.31	2.00 ± 0.53	0.58 ± 0.43	2.83 ± 0.20	0.44 ± 0.17	1.17 ± 0.26	0.36 ± 0.25

Table II (continuous)

Treatment	Cymbidium aloifotium (L.) Sw.		Coelogyne cumingii Lindl.		D. formosum Roxb. ex Lindl.	
	shoot	high	shoot	high	shoot	high
1	$2.67{\pm}0.62$	0.45 ± 0.24	$3.17 {\pm} 0.52$	$0.46 {\pm} 0.52$	$2.17{\pm}0.62$	0.63 ± 0.37
2	$2.33 {\pm} 0.81$	0.53 ± 0.30	2.43 ± 0.28	$0.37 {\pm} 0.48$	3.33 ± 0.73	$0.50 {\pm} 0.29$
3	$3.83{\pm}0.62$	0.55 ± 0.43	3.67 ± 0.42	0.55 ± 0.32	4.50 ± 0.68	0.71 ± 0.31 ^a
4	$3.67 {\pm} 0.50$	0.43 ± 0.16	$3.42{\pm}0.69$	0.43 ± 0.62	3.48 ± 0.48	0.48 ± 0.24
5	$3.17 {\pm} 0.18$	0.51 ± 0.17	$3.52{\pm}0.38$	0.48 ± 0.75	4.42 ± 0.67	$0.48 {\pm} 0.21$
VW	$2.47 {\pm} 0.55$	0.45 ± 0.25	$2.47{\pm}0.59$	0.41 ± 0.68	3.86 ± 0.92	$0.48 {\pm} 0.29$

Note : a = significant at level of 0.05.

Figure 5 Conservation of orchids were performed by bringing three years old orchids from seeds culturing back along the ecological tourism route of the National Park by pilot tourists and community organizing.

Conclusion

It has been concluded from this study that the diversity of orchids found in this National Park are terrestrial, epiphytic and lithophytic orchid which belong to 5 subfamilies, 25 genera and 68 species. They were grown at 1,100–1,400 meters above mean sea level. The variety of orchids found were varied according to several types of forest in the National Park. The adapted medium using local ingredients could be used to culture wild orchids. The conservation of 7 orchids were performed by bringing three years old grown orchids from seeds culturing back along the ecological tourism route of the National Park by pilot tourists and community organizing in the Park.

Acknowledgments

This research was granted by the Office of the National Research Council of Thailand and the Commission on Higher Education of Thailand. Thanks to Dr. J. F Maxwell for his guidance and help. I would also like to thank the referee for his suggestions given to this paper.

References

Chakrit, R. (1959). Cultivation of Orchids in Thailand Envelopment. Bangkok : Chunpiam.

Coffin, R., Taper.D., & Chbong, C. (1976). Sorbital and sucrose as carbon source for callus culture of some species of the Rosaceae. Can. J. Bot. 54, 547-55

Dressler, R.L. (1981). Phylogyny and Classification of the Orchids Family. Portland : Dioscorides Press.

Piluk, C.(1993). Wild Orchids Survey and Research for Conservation Tourism in Meung and Pangmapha District, Maehongsorn. Kasadsart University, Thailand.

Seidentaden, G.(1975a).Orchids Genera in Thailand I. *Calanthe R.* Br. Dansk Bot.Ark 29(2)

_____. (1975b). Orchids Genera in Thailand II. Cleisostoma Bl. Dansk Bot.Ark 29(3)

_____. (1975c). Orchids Genera in Thailand III. Coelogyne Lindl. Dansk Bot.Ark 29(4) _____. (1976a). Orchids Genera in Thailand IV. *Liparis* A.C.Rich. Dansk Bot.Ark 31(1)

_____. (1977a). Orchids Genera in Thailand V. Orchidoideae. Dansk Bot.Ark 31(2)

_____. (1978a). Orchids Genera in Thailand VI. Neottioideae. Dansk Bot.Ark 32(2)

_____. (1978b). Orchids Genera in Thailand VII. Oberonia Lindl. & Malaxis Sol. ex Sw. Dansk Bot. Ark 33(1)

_____. (1979). Orchids Genera in Thailand VIII. Bulbophyllum Thou. Dansk Bot.Ark 33(3)

Thaitong, O. (2003). Thai Orchids. Faculty of Science. Chulalongkorn University, Thailand.

Thumasiri, K. (1998).Orchid in Nature: Orchid Production Technology. Botany Department. Mahidol University,Thailand.

Trigiano,N. R.& Gray J.D.(2000). Plant Tissue Culture Concepts and Laboratory Exercises. (2nd ed.). Florida : CRC Press.