Skip to main content

Skin

  • Chapter
  • First Online:
Mechanical Properties of Human Tissues

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Skin is the outer covering of the human body, which serves as the first line of defence against the outer environment. Skin is multilayer in structure with highly anisotropic mechanical properties, which varies across body locations. This chapter will provide an in-depth overview of skin’s structure and anisotropic properties. Its tensile mechanical properties will be discussed in detail, and the effect of fiber lines and strain rates will also be highlighted. Also, the frictional properties of the skin exhibited due to its hydration and interaction with other materials will be presented. The learnings will be applicable for research in skin biomechanics, trauma and wound healing, and interaction with textiles and medical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM et al (2000) In vivo model of the mechanical properties of the human skin under suction. Ski Res Technol 6:214–221. https://doi.org/10.1034/J.1600-0846.2000.006004214.X

    Article  Google Scholar 

  2. Hochberg J, Meyer KM, Marion MD (2009) Suture choice and other methods of skin closure. Surg Clin North Am 89:627–641. https://doi.org/10.1016/J.SUC.2009.03.001

    Article  PubMed  Google Scholar 

  3. Untaroiu CD, Yue N, Shin J (2013) A finite element model of the lower limb for simulating automotive impacts. Ann Biomed Eng 41:513–526. https://doi.org/10.1007/S10439-012-0687-0/FIGURES/13

    Article  PubMed  Google Scholar 

  4. Crichton ML, Donose BC, Chen X, Raphael AP, Huang H, Kendall MAF (2011) The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 32:4670–4681. https://doi.org/10.1016/j.biomaterials.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  5. Lapeer RJ, Gasson PD, Karri V (2010) Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Prog Biophys Mol Biol 103:208–216. https://doi.org/10.1016/j.pbiomolbio.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  6. Kumaraswamy N, Khatam H, Reece GP, Fingeret MC, Markey MK, Ravi-Chandar K (2017) Mechanical response of human female breast skin under uniaxial stretching. J Mech Behav Biomed Mater 74:164–175. https://doi.org/10.1016/j.jmbbm.2017.05.027

  7. Edwards C, Marks R (1995) Evaluation of biomechanical properties of human skin. Clin Dermatol 13:375–380. https://doi.org/10.1016/0738-081X(95)00078-T

    Article  CAS  PubMed  Google Scholar 

  8. Goldsmith LA (1990) My organ is bigger than your organ. Arch Dermatol 126:301–302. https://doi.org/10.1001/archderm.1990.01670270033005

    Article  CAS  PubMed  Google Scholar 

  9. Ottenio M, Tran D, Ní Annaidh A, Gilchrist MD, Bruyère K (2015) Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J Mech Behav Biomed Mater 41:241–250. https://doi.org/10.1016/j.jmbbm.2014.10.006

  10. Chanda A, Graeter R, Unnikrishnan V (2015) Effect of blasts on subject-specific computational models of skin and bone sections at various locations on the human body. AIMS Mater Sci 2:425–447. https://doi.org/10.3934/matersci.2015.4.425

    Article  CAS  Google Scholar 

  11. Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180. https://doi.org/10.1016/j.jmbbm.2012.10.021

    Article  PubMed  Google Scholar 

  12. Fenton LA, Horsfall I, Carr DJ (2020) Skin and skin simulants. Aust J Forensic Sci 52:96–106. https://doi.org/10.1080/00450618.2018.1450896

    Article  Google Scholar 

  13. Silver FH, Freeman JW, Devore D (2001) Viscoelastic properties of human skin and processed dermis. Ski Res Technol 7:18–23. https://doi.org/10.1034/j.1600-0846.2001.007001018.x

    Article  CAS  Google Scholar 

  14. Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. CRC Crit Rev Bioeng 1:453–495

    CAS  PubMed  Google Scholar 

  15. Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30:599–606. https://doi.org/10.1016/j.medengphy.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  16. Geerligs M, Peters GWM, Ackermans PAJ, Oomens CWJ, Baaijens FPT (2008) Linear viscoelastic behavior of subcutaneous adipose tissue. Biorheology 45:677–688. https://doi.org/10.3233/BIR-2008-0517

    Article  PubMed  Google Scholar 

  17. Miller-Young JE, Duncan NA, Baroud G (2002) Material properties of the human calcaneal fat pad in compression: experiment and theory. J Biomech 35:1523–1531. https://doi.org/10.1016/S0021-9290(02)00090-8

    Article  PubMed  Google Scholar 

  18. McGrath JA, Uitto J (2010) Anatomy and organization of human skin. Rook’s Textb Dermatol 1:1–53 (Oxford, UK: Wiley-Blackwell; 2010). https://doi.org/10.1002/9781444317633.ch3

  19. Rahmati M, Blaker JJ, Lyngstadaas SP, Mano JF, Haugen HJ (2020) Designing multigradient biomaterials for skin regeneration. Mater Today Adv 5:100051. https://doi.org/10.1016/J.MTADV.2019.100051

    Article  Google Scholar 

  20. Lee Y, Hwang K (2002) Skin thickness of Korean adults. Surg Radiol Anat 24:183–189. https://doi.org/10.1007/s00276-002-0034-5

    Article  CAS  PubMed  Google Scholar 

  21. Pissarenko A, Yang W, Quan H, Brown KA, Williams A, Proud WG et al (2019) Tensile behavior and structural characterization of pig dermis. Acta Biomater 86:77–95. https://doi.org/10.1016/j.actbio.2019.01.023

    Article  CAS  PubMed  Google Scholar 

  22. Chanda A (2018) Biomechanical modeling of human skin tissue surrogates. Biomimetics 3:18. https://doi.org/10.3390/BIOMIMETICS3030018

  23. Sutradhar A, Miller MJ (2013) In vivo measurement of breast skin elasticity and breast skin thickness. Ski Res Technol 19:e191–e199. https://doi.org/10.1111/j.1600-0846.2012.00627.x

    Article  Google Scholar 

  24. Ní Annaidh A, Bruyère K, Destrade M, Gilchrist MD, Otténio M (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5:139–148. https://doi.org/10.1016/j.jmbbm.2011.08.016

  25. Wu JZ, Dong RG, Smutz WP, Schopper AW (2003) Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Biomed Mater Eng 13:373–385

    PubMed  Google Scholar 

  26. Flynn C, McCormack BAO (2008) Finite element modelling of forearm skin wrinkling. Ski Res Technol 14:261–269. https://doi.org/10.1111/j.1600-0846.2008.00289.x

    Article  Google Scholar 

  27. Langer K (1978) On the anatomy and physiology of the skin. I. The cleavability of the cutis. Br J Plast Surg 31:3–8 (Churchill Livingstone). https://doi.org/10.1016/0007-1226(78)90003-6

  28. Kwak M, Son D, Kim J, Han K (2014) Static Langer’s line and wound contraction rates according to anatomical regions in a porcine model. Wound Repair Regen 22:678–682. https://doi.org/10.1111/wrr.12206

    Article  PubMed  Google Scholar 

  29. Cox HT (1941) The cleavage lines of the skin. Br J Surg 29:234–240. https://doi.org/10.1002/bjs.18002911408

    Article  Google Scholar 

  30. Pissarenko A, Meyers MA (2020) The materials science of skin: analysis, characterization, and modeling. Prog Mater Sci 110:100634. https://doi.org/10.1016/j.pmatsci.2019.100634

    Article  Google Scholar 

  31. Newell KA (2007) Wound closure. Essent Clin Proced 313–341. https://doi.org/10.1016/B978-1-4160-3001-0.50027-7

  32. Sanders R (1973) Torsional elasticity of human skin in vivo. Pflügers Arch Eur J Physiol 342:255–260. https://doi.org/10.1007/BF00591373/METRICS

    Article  CAS  Google Scholar 

  33. Karimi A, Faturechi R, Navidbakhsh M, Hashemi SA (2014) A Nonlinear hyperelastic behavior to identify the mechanical properties of rat skin under uniaxial loading. J Mech Med Biol 14. https://doi.org/101142/S0219519414500754

    Google Scholar 

  34. Karimi A, Navidbakhsh M (2015) Measurement of the uniaxial mechanical properties of rat skin using different stress–strain definitions. Ski Res Technol 21:149–157. https://doi.org/10.1111/SRT.12171

    Article  CAS  Google Scholar 

  35. Velardi F, Fraternali F, Angelillo M (2006) Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech Model Mechanobiol 5:53–61. https://doi.org/10.1007/S10237-005-0007-9/METRICS

    Article  CAS  PubMed  Google Scholar 

  36. Shi DF, Wang DM, Wang CT, Liu A (2012) A novel, inexpensive and easy to use tendon clamp for in vitro biomechanical testing. Med Eng Phys 34:516–520. https://doi.org/10.1016/J.MEDENGPHY.2011.11.019

    Article  PubMed  Google Scholar 

  37. Chanda A, Unnikrishnan V (2017) A realistic 3D computational model of the closure of skin wound with interrupted sutures. J Mech Med Biol 17. https://doi.org/10.1142/S0219519417500257

  38. Chanda A, Graeter R (2018) Human skin-like composite materials for blast induced injury mitigation. J Compos Sci 2:44. https://doi.org/10.3390/jcs2030044

    Article  Google Scholar 

  39. Wu KS, Van Osdol WW, Dauskardt RH (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27:785–795. https://doi.org/10.1016/j.biomaterials.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  40. Yuan Y, Verma R (2006) Measuring microelastic properties of stratum corneum. Colloids Surf B Biointerfaces 48:6–12. https://doi.org/10.1016/j.colsurfb.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  41. Sivamani RK, Wu GC, Gitis NV, Maibach HI (2003) Tribological testing of skin products: gender, age, and ethnicity on the volar forearm. Ski Res Technol 9:299–305. https://doi.org/10.1034/J.1600-0846.2003.00034.X

    Article  Google Scholar 

  42. Tang W, Bhushan B, Ge S (2010) Friction, adhesion and durability and influence of humidity on adhesion and surface charging of skin and various skin creams using atomic force microscopy. J Microsc 239:99–116. https://doi.org/10.1111/J.1365-2818.2009.03362.X

    Article  CAS  PubMed  Google Scholar 

  43. Cua AB, Wilhelm KP, Maibach HI (1990) Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss. Br J Dermatol 123:473–479. https://doi.org/10.1111/J.1365-2133.1990.TB01452.X

    Article  CAS  PubMed  Google Scholar 

  44. Lodén M, Olsson H, Axéll T, Linde YW (1992) Friction, capacitance and transepidermal water loss (TEWL) in dry atopic and normal skin. Br J Dermatol 126:137–141. https://doi.org/10.1111/J.1365-2133.1992.TB07810.X

  45. Liu X, Chan MK, Hennessey B, RĂĽbenach T, Alay G (2005) Quantifying touch-feel perception on automotive interiors by a multi-function tribological probe microscope. J Phys Conf Ser 13:357. https://doi.org/10.1088/1742-6596/13/1/082

    Article  Google Scholar 

  46. Bhushan B, Wei G, Haddad P (2005) Friction and wear studies of human hair and skin. Wear 259:1012–1021. https://doi.org/10.1016/J.WEAR.2004.12.026

    Article  CAS  Google Scholar 

  47. Derler S, Schrade U, Gerhardt LC (2007) Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear 263:1112–1116. https://doi.org/10.1016/J.WEAR.2006.11.031

    Article  CAS  Google Scholar 

  48. Wilhelm K-P, Elsner P, Berardesca E, Maibach HI (2007) Bioengineering of the skin: Skin imaging & analysis (2nd ed). CRC press. https://doi.org/10.3109/9781420005516

  49. Adams MJ, Briscoe BJ, Johnson SA (2007) Friction and lubrication of human skin. Tribol Lett 26:239–253. https://doi.org/10.1007/S11249-007-9206-0/FIGURES/13

    Article  CAS  Google Scholar 

  50. Koudine AA, Barquins M, Anthoine PH, Aubert L, Leveque JL (2000) Frictional properties of skin: proposal of a new approach. Int J Cosmet Sci 22:11–20. https://doi.org/10.1046/J.1467-2494.2000.00006.X

  51. Pailler-Mattéi C, Zahouani H (2012) Study of adhesion forces and mechanical properties of human skin in vivo. Br J Dermatol 18:1739–58. https://doi.org/10.1163/1568561042708368.

  52. Derler S, Gerhardt LC, Lenz A, Bertaux E, Hadad M (2009) Friction of human skin against smooth and rough glass as a function of the contact pressure. Tribol Int 42:1565–1574. https://doi.org/10.1016/J.TRIBOINT.2008.11.009

    Article  Google Scholar 

  53. Akazaki S, Nakagawa H, Kazama H, Osanai O, Kawai M, Takema Y et al (2002) Age-related changes in skin wrinkles assessed by a novel three-dimensional morphometric analysis. Br J Dermatol 147:689–695. https://doi.org/10.1046/J.1365-2133.2002.04874.X

    Article  CAS  PubMed  Google Scholar 

  54. Boyer G, Laquièze L, Le Bot A, Laquièze S, Zahouani H (2009) Dynamic indentation on human skin in vivo: ageing effects. Ski Res Technol 15:55–67. https://doi.org/10.1111/J.1600-0846.2008.00324.X

    Article  CAS  Google Scholar 

  55. Cua AB, Wilhelm KP, Maibach HI (1995) Skin surface lipid and skin friction: relation to age, sex and anatomical region. Skin Pharmacol Physiol 8:246–251. https://doi.org/10.1159/000211354

    Article  CAS  Google Scholar 

  56. El Khyat A, Mavon A, Leduc M, Agache P, Humbert P (1996) Skin critical surface tension. Ski Res Technol 2:91–96. https://doi.org/10.1111/J.1600-0846.1996.TB00066.X

    Article  CAS  Google Scholar 

  57. Pailler-Mattei C, Nicoli S, Pirot F, Vargiolu R, Zahouani H (2009) A new approach to describe the skin surface physical properties in vivo. Colloids Surfaces B Biointerfaces 68:200–206. https://doi.org/10.1016/J.COLSURFB.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  58. Comaish S, Bottoms E (1971) The skin and friction: deviations from Amonton’s laws, and the effects of hydration and lubrication. Br J Dermatol 84:37–43. https://doi.org/10.1111/J.1365-2133.1971.TB14194.X

    Article  CAS  PubMed  Google Scholar 

  59. Pavlov Y V, Rae A, Bruce R, Stout HP, Townend PP, Matto AR et al (2016) Influence of fiber type and moisture on measured fabric-to-skin friction. Textile Res J 64:722–728. https://doi.org/10.1177/004051759406401204

  60. Gerhardt LC, Strässle V, Lenz A, Spencer ND, Derler S (2008) Influence of epidermal hydration on the friction of human skin against textiles. J R Soc Interface 5:1317–1328. https://doi.org/10.1098/RSIF.2008.0034

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hendriks CP, Franklin SE (2010) Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol Lett 37:361–373. https://doi.org/10.1007/S11249-009-9530-7/TABLES/3

    Article  CAS  Google Scholar 

  62. Kwiatkowska M, Franklin SE, Hendriks CP, Kwiatkowski K (2009) Friction and deformation behaviour of human skin. Wear 267:1264–1273. https://doi.org/10.1016/J.WEAR.2008.12.030

    Article  CAS  Google Scholar 

  63. André T, Lefèvre P, Thonnard JL (2009) A continuous measure of fingertip friction during precision grip. J Neurosci Methods 179:224–229. https://doi.org/10.1016/J.JNEUMETH.2009.01.031

    Article  PubMed  Google Scholar 

  64. Tomlinson SE, Lewis R, Carré MJ (2007) Review of the frictional properties of finger-object contact when gripping. Proc Inst Mech Eng Part J J Eng Tribol 221:841–850. https://doi.org/10.1243/13506501JET313

  65. Masen MA (2011) A systems based experimental approach to tactile friction. J Mech Behav Biomed Mater 4:1620–1626. https://doi.org/10.1016/J.JMBBM.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  66. O’Meara DM, Smith RM (2010) Static friction properties between human palmar skin and five grabrail materials. Ergonomics 44:973–88. https://doi.org/10.1080/00140130110074882

  67. Zhang M, Mak AFT (2016) In vivo friction properties of human skin. http://doi.org/103109/03093649909071625. 23:135–141. https://doi.org/10.3109/03093649909071625

  68. Elsner P, Wilhelm D, Maibach HI (1990) Physiological skin surface water loss dynamics of human vulvar and forearm skin. Acta Derm Venereol 70:141–144. https://doi.org/102340/0001555570141144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chanda .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Singh, G. (2023). Skin. In: Mechanical Properties of Human Tissues. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-2225-3_2

Download citation

Publish with us

Policies and ethics